1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68(6):394–424. 10.3322/caac.21492 [PubMed] [CrossRef] [Google Scholar]
2. WHO: World Health Organization International Agency for Research on Cancer. Press release N° 263. Geneva, Switzerland: (2018). Available at: https://www.who.int/cancer/PRGlobocanFinal.pdf (Accessed on January 2nd, 2020). 12 September. [Google Scholar]
3. Botta L, Dal Maso L, Guzzinati S, Panato C, Gatta G, Trama A, et al.Changes in life expectancy for cancer patients over time since diagnosis. J Adv Res (2019) 20:153–9. 10.1016/j.jare.2019.07.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Gu X, Zheng R, Xia C, Zeng H, Zhang S, Zou X, et al.Interactions between life expectancy and the incidence and mortality rates of cancer in China: a population−based cluster analysis. Cancer Commun (2018) 38:44. 10.1186/s40880-018-0308-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Cao B, Bray F, Beltrán-Sánchez H, Ginsburg O, Soneji S, Soerjomataram I.Benchmarking life expectancy and cancer mortality: global comparison with cardiovascular disease 1981-2010. BMJ (2017) 357:j2765. 10.1136/bmj.j2765 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang X-S, et al.Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet (2015) 385:977–1010. 10.1016/S0140-6736(14)62038-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
7. Goldberg JL, Sondel PM.Enhancing Cancer Immunotherapy Via Activation of Innate Immunity. Semin Oncol (2015) 42(4):562–72. 10.1053/j.seminoncol.2015.05.012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Yarchoan M, Hopkins A, Jaffee E.Tumor mutational burden and response rate to PD-1 inhibition. N Eng J Med (2017) 377(25):2500–1. 10.1056/NEJMc1713444 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al.Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol (2019) 10:16. 10.3389/fimmu.2019.0016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
10. Sharma P, Allison JP.Dissecting the mechanisms of immune checkpoint therapy. Nat Rev Immunol (2020) 20(2):75–6. 10.1038/s41577-020-0275-8 [PubMed] [CrossRef] [Google Scholar]
11. Intlekofer AM, Thompson CB.At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol (2013) 94(1):25–39. 10.1189/jlb.1212621 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Martinez-Lostao L, Anel A, Pardo J.How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res (2015) 21(22):5047–56. 10.1158/1078-0432.CCR-15-0685 [PubMed] [CrossRef] [Google Scholar]
13. Gonzalez H, Hagerline C, Werb Z.Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev (2018) 32(19-20):1267–84. 10.1101/gad.314617.118 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
14. FDA US. Department of Health and Human Services. Guidance for Industry and FDA Staff. Review Criteria for Assessment of C-reactive protein (CRP), High Sensitivity C-Reactive Protein (hsCRP) and Cardiac C-Reactive Protein (cCRP) Assays. Document issued on September 22, 2005 Content current as of: 03/13/2018. [Google Scholar]
15. Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S, Lorton C.C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review. PloS One (2015) 10(12):e0143080. 10.1371/journal.pone.0143080 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Alifano M, Falcoz PE, Seegers V, Roche N, Schussler O, Younes M, et al.Preresection serum C-reactive protein measurement and survival among patients with resectable non–small cell lung cancer. J Thorac Cardiovasc Surg (2011) 142:1161–7. 10.1016/j.jtcvs.2011.07.021 [PubMed] [CrossRef] [Google Scholar]
17. Aref H, Refaat S.CRP evaluation in non-small cell lung cancer. Egyptian J Chest Dis Tuberculosis (2014) 63:717–22. 10.1016/j.ejcdt.2014.02.003 [CrossRef] [Google Scholar]
18. Bittoni MA, Focht BC, Clinton SK, Buckworth J, Harris RE.Prospective evaluation of C-reactive protein, smoking and lung cancer death in the Third National Health and Nutrition Examination Survey. Int J Oncol (2015) 47:1537–44. 10.3892/ijo.2015.3141 [PubMed] [CrossRef] [Google Scholar]
19. Chaturvedi AK, Caporaso NE, Katki HA, Wong H-L, Chatterjee N, Pine SR, et al.C-Reactive Protein and Risk of Lung Cancer. J Clin Oncol (2010) 28(16):2719–26. 10.1200/JCO.2009.27.0454 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20. Hara M, Matsuzaki Y, Shimuzu T, Tomita M, Ayabe T, Enomoto Y, et al.Preoperative Serum C-reactive Protein Level in Non-small Cell Lung Cancer. Anticancer Res (2007) 27:3001–4. [PubMed] [Google Scholar]
21. Hara M, Yonei A, Ayabe T, Tomita M, Nakamura K, Onitsuka T.Postoperative serum C-Reactive Protein levels in non-small cell lung cancer patients. Ann Thorac Cardiovasc Surg (2010) 16:85–90. [PubMed] [Google Scholar]
22. Jin Y, Sun Y, Shi X, Zhao J, Shi L, Yu X.Prognostic value of circulating C−reactive protein levels in patients with non-small cell lung cancer: A systematic review with meta−analysis. J Cancer Res Ther (2014) 10(Special Issue 2):Suppl:C160–6. 10.4103/0973-1482.145854 [PubMed] [CrossRef] [Google Scholar]
23. Jing X, Huang C, Zhou H, Li C, Fan L, Chen J, et al.Association between serum C-reactive protein value and prognosis of patients with non-small cell lung cancer: a meta-analysis. Int J Clin Exp Med (2015) 8(7):10633–9. [PMC free article] [PubMed] [Google Scholar]
24. Koch A, Fohlin H, Sörenson S.Prognostic Significance of C-reactive protein and Smoking in Patients with Advanced Non-small Cell Lung Cancer Treated with First-Line Palliative Chemotherapy. J Thoracic Oncol (2009) 4(3):326–32. 10.1097/JTO.0b013e31819578c8 [PubMed] [CrossRef] [Google Scholar]
25. Liao C, Yu Z, Guo W, Liu Q, Wu Y, Li Y, et al.Prognostic value of circulating inflammatory factors in non-small cell lung cancer: a systematic review and meta-analysis. Cancer Biomark (2014) 14(6):469–81. 10.3233/CBM-140423 [PubMed] [CrossRef] [Google Scholar]
26. Muller DC, Larose TL, Hodge A, Guida F, Langhammer A, Grankvist K, et al.Circulating high sensitivity C reactive protein concentrations and risk of lung cancer: nested case-control study within Lung Cancer Cohort Consortium. BMJ (2018) 364:k4981. 10.1136/bmj.k4981 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27. Pastorino U, Morelli D, Leuzzi G, Gisabella M, Suatoni P, Taverna F, et al.Baseline and postoperative C-reactive protein levels predict mortality in operable lung cancer. Eur J Cancer (2017) 79:90–7. 10.1016/j.ejca.2017.03.020 [PubMed] [CrossRef] [Google Scholar]
28. Shinohara S, Otsuki R, Onitsuka T, Machida K, Matsuo M, Nakagawa M, et al.Postoperative C-reactive Protein Is a Predictive Biomarker for Survival After Non-small Cell Lung Cancer Resection. Anticancer Res (2019) 39:2193–8. 10.21873/anticanres.13334 [PubMed] [CrossRef] [Google Scholar]
29. Sin DD, Man SFP, McWilliams A, Lam S.Progression of airway dysplasia and C - reactive protein in smokers at high risk of lung cancer. Am J Respir Crit Care Med (2006) 173:535–9. 10.1164/rccm.200508-1305OC [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30. Szturmowicz M, Rudziński P, Kacprzak A, Langfort R, Bestry I, Broniarek-Samson B, et al.Prognostic value of serum C-reactive protein (CRP) and cytokeratin 19 fragments (Cyfra 21-1) but not carcinoembryonic antigen (CEA) in surgically treated patients with non-small cell lung cancer. Pneumonol Alergol Pol (2014) 82:422–9. 10.5603/PiAP.2014.0055 [PubMed] [CrossRef] [Google Scholar]
31. Tomita M, Shimizu T, Ayabe T, Onitsuka T.Elevated Preoperative Inflammatory Markers Based on Neutrophil-to-Lymphocyte Ratio and C-Reactive Protein Predict Poor Survival in Resected Non-small Cell Lung Cancer. Anticancer Res (2012) 32:3535–8. [PubMed] [Google Scholar]
32. Torrecilla JA, Scrimini S, Sauleda J, García-Cosío FB, Noguera A, Iglesias A, et al.Role of C reactive protein in non-small cell lung cancer staging. Eur Respir J (2011) 38(Suppl 55):2806. [Google Scholar]
33. Vagulienė N, Žemaitis M, Miliauskas S, Urbonienė D, Šitkauskienė B, Sakalauskas R.Comparison of C-reactive Protein Levels in Patients with Lung Cancer and Chronic Obstructive Pulmonary Disease. Medicina (Kaunas) (2011) 47(8):421–7. 10.3390/medicina47080059 [PubMed] [CrossRef] [Google Scholar]
34. Wei L, Du Y, Wu W, Li L.Changes of tumor markers and C reactive proteinin different status of lung cancer. Int J Clin Exp Pathol (2016) 9(11):11984–8. [Google Scholar]
35. Zhao Z, Li X, Zhao Y, Wang D, Li Y, Liu L, et al.Role of C-reactive protein and procalcitonin in discriminating between infectious fever and tumor fever in non-neutropenic lung cancer patients. Medicine (2018) 97:33(e11930). 10.1097/MD.0000000000011930 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
36. Allin KH, Nordestgaard BG, Flyger H, Bojesen SE.Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: a cohort study. Breast Cancer Res (2011) 13:R55. 10.1186/bcr2891 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37. Asegaonkar SB, Takalkar UV, Kodlikeri P, Pagdhune A, Bonduliya V, Thorat AP.Serum high sensitivity C-reactive protein in breast cancer patients. Int J Res Med Sci (2014) 2(4):1408–11. 10.5455/2320-6012.ijrms20141131 [CrossRef] [Google Scholar]
38. Gathirua-Mwangi WG, Song Y, Monahan P, Champion VL, Zollinger T.Associations of metabolic syndrome and C-reactive protein with mortality from total cancer, obesity-linked cancers and breast cancer among women in NHANES III. Int J Cancer (2018) 143(3):535–42. 10.1002/ijc.31344 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
39. Guo L, Liu S, Zhang S, Chen Q, Zhang M, Quan P, et al.C-reactive protein and risk of breast cancer: A systematic review and meta-analysis. Sci Rep (2015) 5:10508. 10.1038/srep10508 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
40. Nelson SH, Brasky TM, Patterson RE, Laughlin GA, Kritz-Silverstein D, Edwards BJ, et al.The association of the C-reactive protein inflammatory biomarker with breast cancer incidence and mortality in the Women’s Health Initiative. Cancer Epidemiol Biomarkers Prev (2017) 26(7):1100–6. 10.1158/1055-9965.EPI-16-1005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Rodriguez-Gil JL, Takita C, Wright J, Reis IM, Zhao W, Brian EL, et al.Inflammatory biomarker C-Reactive Protein and radiotherapy-induced early adverse skin reactions in breast cancer patients. Cancer Epidemiol Biomarkers Prev (2014) 23(9):1873–83. 10.1158/1055-9965.EPI-14-0263 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Sabiston CM, Wrosch C, Castonguay AL, Sylvester BD.Changes in physical activity behavior and C-reactive protein in breast cancer patients. Ann Behav Med (2018) 52:545–51. 10.1093/abm/kax010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43. Sicking I, Edlund K, Wesbuer E, Weyer V, Battista MJ, Lebrecht A, et al.Prognostic Influence of pre-operative C-Reactive Protein in node-negative breast cancer patients. PloS One (2014) 9(10):e111306. 10.1371/journal.pone.0111306 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44. Thomson CA, Thompson PA, Wright-Bea J, Nardi E, Frey GR, Stopeck A.Metabolic Syndrome and Elevated C-Reactive Protein in Breast Cancer Survivors on Adjuvant Hormone Therapy. J Women’s’ Health (2009) 18(12):2041–7. 10.1089/jwh.2009.1365 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
45. Villaseñor A, Flatt SW, Marinac C, Natarajan L, Pierce JP, Patterson RE.Postdiagnosis C - reactive protein and Breast Cancer Survivorship: Findings from the WHEL Study. Cancer Epidemiol Biomarkers Prev (2013) 23(1):189–99. 10.1158/1055-9965.EPI-13-0852 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Wang J, Lee IM, Tworoger SS, Buring JE, Ridker PM, Rosner B, et al.Plasma C-reactive protein and risk of breast cancer in two prospective studies and a meta-analysis. Cancer Epidemiol Biomarkers Prev (2015) 24(8):1199–206. 10.1158/1055-9965.EPI-15-0187 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47. Zhang SM, Lin J, Cook NR, Lee I-M, Manson JE, Buring JE, et al.C - reactive protein and risk of breast cancer. J Natl Cancer Inst (2007) 99:890–94. 10.1093/jnci/djk202 [PubMed] [CrossRef] [Google Scholar]
48. Aleksandrova K, Jenab M, Boeing H, Jansen E, Bueno-de-Mesquita HB, Rinaldi S, et al.Circulating C-Reactive Protein Concentrations and Risks of Colon and Rectal Cancer: A Nested Case-Control Study Within the European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol (2010) 172(4):407–18. 10.1093/aje/kwq135 [PubMed] [CrossRef] [Google Scholar]
49. Erlinger TP, Platz EA, Rifai N, Helzlsouer KJ.C - reactive protein and the Risk of Incident Colorectal Cancer. JAMA (2004) 291(5):585–90. 10.1001/jama.291.5.585 [PubMed] [CrossRef] [Google Scholar]
50. Fang D, Ye Y.C-reactive protein gene rs1205 polymorphism is not associated with the risk of colorectal cancer. Biosci Rep (2017) 37:BSR20170872. 10.1042/BSR20170872 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51. Goyal A, Terry MB, Jin Z, Siegel AB.C-Reactive Protein and Colorectal Cancer Mortality in U.S. Adults Cancer Epidemiol Biomarkers Prev (2014) 23(8):1609–18. 10.1158/1055-9965.EPI-13-0577 [PubMed] [CrossRef] [Google Scholar]
52. Holm M, Saraswat M, Joenväärä S, Ristimäki A, Haglund C, Renkonen R.Colorectal cancer patients with different C-reactive protein levels and 5-year survival times can be differentiated with quantitative serum proteomics. PloS One (2018) 13(4):e0195354. 10.1371/journal.pone.0195354 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53. Ishizuka M, Nagata H, Takagi K, Kubota K.C-Reactive Protein is Associated with Distant Metastasis of T3 Colorectal Cancer. Anticancer Res (2012) 32:1409–16. [PubMed] [Google Scholar]
54. Lumachi F, Basso SMM, Santeufemia DA, Ermani M, Lo Re G, Chiara GB.Preoperative Serum C - reactive protein and its Prognostic Significance in Patients with Stage III-IV Colorectal Cancer. Anticancer Res (2014) 34:7263–6. [PubMed] [Google Scholar]
55. Nimptsch K, Aleksandrova K, Boeing H, Janke J, Lee Y-A, Jenab M, et al.Association ofCRPgenetic variants with blood concentrations of C-reactive protein and colorectal cancer risk. Int J Cancer (2015) 136:1181–92. 10.1002/ijc.29086 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Shibutani M, Maeda K, Nagahara H, Ohtani H, Sugano K, Ikeya T, et al.Elevated preoperative serum C-reactive protein levels are associated with poor survival in patients with colorectal cancer. Hepatogastroenterology (2014) 61(136):2236–40. [PubMed] [Google Scholar]
57. Toiyama Y, Fujikawa H, Koike Y, Saigusa S, Inoue Y, Tanaka K, et al.Evaluation of preoperative C-reactive protein aids in predicting poor survival in patients with curative colorectal cancer with poor lymph node assessment. Oncol Lett (2012) 5:1881–8. 10.3892/ol.2013.1308 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
58. Zhou B, Shu B, Yang J, Liu J, Xi T, Xing Y.C-reactive protein, interleukin-6 and the risk of colorectal cancer: a meta-analysis. Cancer Causes Control (2014) 25:1397–405. 10.1007/s10552-014-0445-8 [PubMed] [CrossRef] [Google Scholar]
59. Badakhshi H, Kaul D, Zhao KL.Association between the inflammatory biomarker, C-reactive protein, and the response to radiochemotherapy in patients with esophageal cancer. Mol Clin Oncol (2016) 4(4):643–7. 10.3892/mco.2016.753 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
60. Huang Y, Feng JF, Liu JS, Chen QX.Prognostic role of serum C-reactive protein in esophageal cancer: a systematic review and meta-analysis. Ther Clin Risk Manag (2015) 11:89–94. 10.2147/TCRM.S70954 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61. Katano A, Takahashi W, Yamash*ta H, Yamamoto K, Ando M, Yoshida M, et al.The impact of elevated C-reactive protein level on the prognosis for oro-hypopharynx cancer patients treated with radiotherapy. Sci Rep (2017) 7(1):17805. 10.1038/s41598-017-18233-w [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. Zheng TL, Cao K, Liang C, Zhang K, Guo HZ, Li DP, et al.Prognostic value of C-reactive protein in esophageal cancer: a meta-analysis. Asian Pac J Cancer Prev (2014) 15(19):8075–81. 10.7314/apjcp.2014.15.19.8075 [PubMed] [CrossRef] [Google Scholar]
63. Baba H, Kuwabara K, Ishiguro T, Hatano S, Matsuzawa T, f*ckuchi M, et al.C-reactive Protein as a Significant Prognostic Factor for Stage IV Gastric Cancer Patients. Anticancer Res (2013) 33:5591–6. [PubMed] [Google Scholar]
64. Chang C-C, Sun C-F, Pai H-J, Wang W-K, Hsieh C-C, Kuo L-M, et al.Preoperative Serum C -reactive protein and Gastric Cancer; Clinical-pathological Correlation and Prognostic Significance. Med J (2010) 33:301–12. [PubMed] [Google Scholar]
65. Shimura T, Kitagawa M, Yamada T, Ebi M, Mizosh*ta T, Tanida S, et al.C-reactive Protein is a Potential Prognostic Factor for Metastatic Gastric Cancer. Anticancer Res (2012) 32:491–6. [PubMed] [Google Scholar]
66. Shishido Y, Fujitani K, Yamamoto K, Hirao M, Tsujinaka T, Sekimoto M.C-reactive protein on postoperative day 3 as a predictor of infectious complications following gastric cancer resection. Gastric Cancer (2016) 19:293–301. 10.1007/s10120-014-0455-y [PubMed] [CrossRef] [Google Scholar]
67. Yu Q, Yu X-F, Zhang S-D, Wang H-H, Wang H-Y, Teng L-S.Prognostic Role of C-reactive protein in Gastric Cancer: A Meta-analysis. Asian Pacific J Cancer Prev (2013) 14(10):5735–40. 10.7314/APJCP.2013.14.10.5735 [PubMed] [CrossRef] [Google Scholar]
68. Fang Y, Xu C, Wu P, Zhang L-H, Li D-W, Sun J-H, et al.Prognostic role of C-reactive protein in patients with nasopharyngeal carcinoma A meta-analysis and literature review. Medicine (2017) 96:45(e8463). 10.1097/MD.0000000000008463 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
69. He X, Li J-P, Liu X-H, Zhang J-P, Zeng Q-Y, Chen H, et al.Prognostic value of C-reactive protein/albumin ratio in predicting overall survival of Chinese cervical cancer patient’s overall survival: comparison among various inflammation-based factors. J Cancer (2018) 9(10):1877–84. 10.7150/jca.23320 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70. Tai SF, Chien H-T, Young C-K, Tsao C-K, de Pablo A, Fan K-H, et al.Roles of preoperative C-reactive protein are more relevant in buccal cancer than other subsites. World J Surg Oncol (2017) (2017)15:47. 10.1186/s12957-017-1116-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
71. Du J, Hu W, Yang C, Wang Y, Wang X, Yang P.C-reactive protein is associated with the development of tongue squamous cell carcinoma. Acta Biochim Biophys Sin (2018) 50(3):238–45. 10.1093/abbs/gmy004 [PubMed] [CrossRef] [Google Scholar]
72. Oliveira KG, von Zeidler SV, Lamas AZ, de Podesta JRV, Sena A, Souza ED, et al.Relationship of inflammatory markers and pain in patients with head and neck cancer prior to anticancer therapy. Braz J Med Biol Res (2014) 47(7):600–4. 10.1590/1414-431X20143599 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73. Carr BI, Akkiz H, Guerra V, Üsküdar O, Kuran S, Karaoğullarından Ü, et al.C-reactive protein and hepatocellular carcinoma: analysis of its relationship to tumor factors. Clin Pract (Lond) (2018) 15(Spec Issue):625–34. 10.4172/clinical-practice.1000409 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74. Kinosh*ta A, Onoda H, Imai N, Iwaku A, Oishi M, Tanaka K, et al.The addition of C-reactive protein to validated staging systems improves their prognostic ability in patients with hepatocellular carcinoma. Oncology (2014) 86:308–17. 10.1159/000360704 [PubMed] [CrossRef] [Google Scholar]
75. Hefler L, Concin N, Hofstetter G, Marth C, Mustea A, Sehouli J, et al.Serum C-Reactive Protein as independent prognostic variable in patients with ovarian cancer. Clin Cancer Res (2008) 14(3):710–4. 10.1158/1078-0432.CCR-07-1044 [PubMed] [CrossRef] [Google Scholar]
76. Li J, Jiao X, Yuan Z, Qiu H, Guo R.C-reactive protein and risk of ovarian cancer: A systematic review and meta-analysis. Medicine (2017) 96:34(e7822). 10.1097/MD.0000000000007822 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
77. Lundin E, Dossus L, Clendenen T, Krogh V, Grankvist K, Wulff M, et al.C-reactive protein and ovarian cancer: a prospective study nested in three cohorts (Sweden, USA, Italy). Cancer Causes Control (2009) 20(7):1151–9. 10.1007/s10552-009-9330-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78. Graff JN, Beer TM, Liu B, Sonpavde G, Taioli E.Pooled analysis of C-Reactive Protein levels and mortality in prostate cancer patients. Clin Genitourin Cancer (2015) 13(4):e217–21. 10.1016/j.clgc.2015.01.011 [PubMed] [CrossRef] [Google Scholar]
79. Liu Z-Q, Chu L, Fang J-M, Zhang X, Zhao H-X, Chen Y-J, et al.Prognostic role of C−reactive protein in prostate cancer: a systematic review and meta−analysis. Asian J Androl (2014) 16:467–71. 10.4103/1008-682X.123686 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
80. Platz EA, De Marzo AM, Erlinger TP, Rifai N, Visvanathan K, Hoffman SC, et al.No association between pre-diagnostic plasma C-reactive protein concentration and subsequent prostate cancer. Prostate (2004) 59(4):393–400. 10.1002/pros.10368 [PubMed] [CrossRef] [Google Scholar]
81. Schnoeller TJ, Steinestel J, Steinestel K, Jentzmik F, Schrader AJ.Do preoperative serum C−reactive protein levels predict the definitive pathological stage in patients with clinically localized prostate cancer? Int Urol Nephrol (2015) 47:765–70. 10.1007/s11255-015-0952-x [PubMed] [CrossRef] [Google Scholar]
82. Thurner EM, Krenn-Pilko S, Langsenlehner U, Stojakovic T, Pichler M, Gerger A, et al.The elevated C-reactive protein level is associated with poor prognosis in prostate cancer patients treated with radiotherapy. Eur J Cancer (2015) 51(5):610–9. 10.1016/j.ejca.2015.01.002 [PubMed] [CrossRef] [Google Scholar]
83. Xu L, Zhao Q, Huang S, Li S, Wang J, Li Q.Serum C-reactive protein actedasa prognostic biomarker for overall survival in metastatic prostate cancer patients. Tumour Biol (2015) 36(2):669–73. 10.1007/s13277-014-2670-x [PubMed] [CrossRef] [Google Scholar]
84. Liu Y, Chen S, Zheng C, Ding M, Zhang L, Wang L, et al.The prognostic value of the preoperative c-reactive protein/albumin ratio in ovarian cancer. BMC Cancer (2017) 17:285. 10.1186/s12885-017-3220-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
85. Chen J, Jing X, Deng X, Gao F, Wang X, Han D, et al.Prognostic value of serum C-reactive protein in pancreatic cancer: a meta-analysis. Int J Clin Exp Med (2018) 11(11):11789–96. [Google Scholar]
86. Inoue D, Ozaka M, Matsuyama M, Yamada I, Takano K, Saiura A, et al.Prognostic value of neutrophil–lymphocyte ratio and level of C-reactive protein in a large cohort of pancreatic cancer patients: a retrospective study in a single institute in Japan. Japanese J Clin Oncol (2015) 45(1):61–6. 10.1093/jjco/hyu159 [PubMed] [CrossRef] [Google Scholar]
87. Stevens L, Pathak S, Nunes QM, Pandanaboyana S, Macutkiewicz C, Smart N, et al.Prognostic significance of pre-operative C-reactive protein and the neutrophil–lymphocyte ratio in resectable pancreatic cancer: a systematic review. HPB (2015) 17:285–91. 10.1111/hpb.12355 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
88. Hsiao W, Herrel LA, Yu C, Kattan MW, Canter DJ, Carthon BC, et al.Nomograms incorporating serum C-reactive protein effectively predict mortality before and after surgical treatment of renal cell carcinoma. Int J Urol (2015) 22(3):264–70. 10.1111/iju.12672 [PubMed] [CrossRef] [Google Scholar]
89. Omae K, Kondo T, Tanabe K.High preoperative C-reactive protein values predict poor survival in patients on chronic hemodialysis undergoing nephrectomy for renal cancer. Urol Oncol (2015) 33(2):67.e9–13. 10.1016/j.urolonc.2014.07.004 [PubMed] [CrossRef] [Google Scholar]
90. Teishima J, Kobatake K, Hayashi T, Seno Y, Ikeda K, Nagamatsu H, et al.Prognostic significance of C-reactive protein in patients with intermediate-risk metastatic renal cell carcinoma treated with molecular targeted therapy. Oncol Lett (2014) 8(2):881–5. 10.3892/ol.2014.2207 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
91. Aziz A, Rink M, Gakis G, Kluth LA, Dechet C, Miller F, et al.Preoperative C-reactive protein in the serum: a prognostic biomarker for upper urinary tract urothelial carcinoma treated with radical nephroureterectomy. Urol Int (2014) 93(3):352–60. 10.1159/000362248 [PubMed] [CrossRef] [Google Scholar]
92. Dai J, Tang K, Xiao W, Yu G, Zeng J, Li W, et al.Prognostic Significance of C -reactive protein in Urological Cancers: A Systematic Review and Meta-analysis. Asian Pac J Cancer Prev (2014) 15(8):3369–75. 10.7314/apjcp.2014.15.8.3369 [PubMed] [CrossRef] [Google Scholar]
93. Guo S, He X, Chen Q, Yang G, Yao K, Dong P, et al.The C-reactive protein/albumin ratio, a validated prognostic score, predicts outcome of surgical renal cell carcinoma patients. BMC Cancer (2017) 17:171. 10.1186/s12885-017-3119-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. Troppan KT, Schlick K, Deutsch A, Melchardt T, Egle A, Stojakovic T, et al.C-reactive protein level is a prognostic indicator for survival and improves the predictive ability of the R-IPI score in diffuse large B-cell lymphoma patients. Br J Cancer (2014) 111:55–60. 10.1038/bjc.2014.277 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
95. Fang S, Wang Y, Sui D, Liu H, Ross MI, Gershenwald JE, et al.C-Reactive Protein as a marker of melanoma progression. J Clin Oncol (2015) 33:1389–96. 10.1200/JCO.2014.58.0209 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
96. Fang E, Wang X, Feng J, Zhao X.The Prognostic Role of Glasgow Prognostic Score and C - reactive protein to Albumin Ratio for Sarcoma: A System Review and Meta-Analysis. Dis Markers (2020) 2020:14 pages. 10.1155/2020/8736509. Article ID 8736509. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
97. Li W, Luo X, Liu Z, Chen Y, Li Z.Prognostic value of C-reactive protein levels in patients with bone neoplasms: A meta-analysis. PloS One (2018) 13(4):e0195769. 10.1371/journal.pone.0195769 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
98. Nakamura T, Grimer R, Gaston C, Francis M, Charman J, Graunt P, et al.The value of C-reactive protein and comorbidity in predicting survival of patients with high grade soft tissue sarcoma. Eur J Cancer (2013) 49(2):377–85. 10.1016/j.ejca.2012.09.004 [PubMed] [CrossRef] [Google Scholar]
99. Nakamura T, Matsumine A, Matsubara T, Asanuma K, Yada Y, Hagi T, et al.Infiltrative tumor growth patterns on magnetic resonance imaging associated with systemic inflammation and oncological outcome in patients with high-grade soft-tissue sarcoma. PloS One (2017) 12(7):e0181787. 10.1371/journal.pone.0181787 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
100. Wang X, Liu S, Zhao X, Fang E, Zhao X.The value of C-reactive protein as an independent prognostic indicator for disease specific survival in patients with soft tissue sarcoma: A meta-analysis. PloS One (2019) 14(7):e0219215. 10.1371/journal.pone.0219215 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
101. Yanagisawa M, Gingrich AA, Judge S, Li C-S, Wang N, Thorpe SW, et al.Serum C-reactive protein and neutrophil/lymphocyte ratio after neoadjuvant radiotherapy in soft tissue sarcoma. Anticancer Res (2018) 38(3):1491–7. 10.21873/anticanres.12376 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
102. Shrotriya S, Walsh D, Nowacki AS, Lorton C, Aktas A, Hullihen B, et al.cSerum C-reactive protein is an important and powerful prognostic biomarker in most adult solid tumors. PloS Onev (2018) 13(8):e0202555. 10.1371/journal.pone.0202555 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
103. Rajab IM, Majerczyk D, Olson ME, Addams JMB, Choe ML, Nelson MS, et al.C-reactive protein in gallbladder diseases: diagnostic and therapeutic insights. Biophysics Rep (2020). 10.1007/s41048-020-00108-9 [CrossRef] [Google Scholar]
104. Tyurina YY, St. Croix CM, Watkins SC, Watson AM, Epperly MW, Tamil S, et al.Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J Leukoc Biol (2019) 106(1):57–81. 10.1002/JLB.3MIR0119-004RR [PMC free article] [PubMed] [CrossRef] [Google Scholar]
105. Zen Q, Zhong W, Mortensen RF.Binding site on human C-reactive Protein (CRP) recognized by the Leukocyte CRP-receptor. J Cell Biochem (1997) 64:140–51. 10.1002/(SICI)1097-4644(199701)64:1<140:AIDJBC16>3.0.CO;2-p [PubMed] [CrossRef] [Google Scholar]
106. Thomassen MJ, Meeker DP, Deodhar SD, Wiedemann HP, Barna BP.Activation of human monocytes and alveolar macrophages by a synthetic peptide of C-reactive protein. J Immunother Emphasis Tumor Immunol (1993) 13(1):1–6. 10.1097/00002371-1993010000-00001 [PubMed] [CrossRef] [Google Scholar]
107. Li H-Y, Wang J, Meng F, Jia Z-K, Su Y, Bai Q-F, et al.An intrinsically disordered motif mediates diverse actions of monomeric C-reactive protein. J Biol Chem (2016) 291(16):8795–804. 10.1074/jbc.M115.695023 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
108. Thompson D, Pepys MB, Wood SP.The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure (1999) 7(2):169–77. 10.1016/S0969-2126(99)80023-9 [PubMed] [CrossRef] [Google Scholar]
109. Shrive AK, Cheetham GMT, Holden D, Myles DAA, Turnell WG, Volanakis JE, et al.Three-dimensional structure of human C-reactive protein. Nat Struc Biol (1996) 3:346–54. 10.1038/nsb0496-346 [PubMed] [CrossRef] [Google Scholar]
110. Wu Y, Potempa LA, Kebir DE, Filep JG.C-reactive protein and inflammation: conformational changes affect function. Biol Chem (2015) 396(11):1181–97. 10.1515/hsz-2015-0149 [PubMed] [CrossRef] [Google Scholar]
111. Dvorak HF.Tumors: wounds that do not heal. New Engl J Med (1986) 315:1650–9. 10.1056/NEJM198612253152606 [PubMed] [CrossRef] [Google Scholar]
112. Balkwill F, Mantovani A.Inflammation and cancer: back to Virchow? Lancet (2001) 357(9255):539–45. 10.1016/S0140-6736(00)04046-0 [PubMed] [CrossRef] [Google Scholar]
113. Agrawal A, Xu Y, Ansardi D, Macon KJ, Volanakis JE.Probing the phosphocholine-binding site of human C-reactive protein by site-directed mutagenesis. J Biol Chem (1992) 267:25352–8. [PMC free article] [PubMed] [Google Scholar]
114. Volanakis JE.Human C-reactive protein: expression, structure, and function. Mol Immunol (2001) 38(2-3):189–97. 10.1016/s0161-5890(01)00042-6 [PubMed] [CrossRef] [Google Scholar]
115. Salonen E-M, Vartio T, Hedman K, Vaheri A.Binding of fibronectin by the acute phase reactant C-reactive protein. J Biol Chem (1984) 259:1496–501. [PubMed] [Google Scholar]
116. Tseng J, Mortensen RF.Binding of human C-reactive protein (CRP) to plasma fibronectin occurs via the phosphorylcholine-binding site. Mol Immunol (1988) 25:679–86. 10.1016/0161-5890(88)90103-4 [PubMed] [CrossRef] [Google Scholar]
117. Ullah N, Ma F-R, Jin Han J, Liu X-L, Fu Y, Liu Y-T, et al.Monomeric C-reactive Protein Regulate Mediated Monocyte Adhesion. Mol Immunol (2020) 117:122–30. 10.1016/j.molimm.2019.10.013 [PubMed] [CrossRef] [Google Scholar]
118. Swanson SJ, McPeek MM, Mortensen RF.Characteristics of the binding of human C-reactive protein (CRP) to laminin. J Cell Biochem (1989) 40:121–32. 10.1002/jcb.240400112 [PubMed] [CrossRef] [Google Scholar]
119. Sproston NR, Ashworth JJ.Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol (2018) 9:754. 10.3389/fimmu.2018.00754 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
120. McFadyen J, Kiefer J, Loseff-Silver J, Braig D, Potempa LA, Eisenhardt SU, et al.Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of CRP and its conformational changes. Front Immunol (2018) 9:1351. 10.3389/fimmu.2018.01351.ecollection. Article 1351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
121. Zhong W, Zen Q, Tebo J, Schlottmann K, Coggeshall M, Mortensen RF, et al.Effect of human C-reactive protein on chemokine and chemotactic factor-induced neutrophil chemotaxis and signaling. J Immunol (1998) 161(5):2533–40. [PubMed] [Google Scholar]
122. Trial J, Potempa LA, Entman ML.The Role of C-reactive Protein in Innate and Acquired Inflammation: New Perspectives. Inflammation Cell Signaling (2016) 3:e1409. 10.14800/ics.1498 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
123. Zhang L, Shen ZY, Wang K, Li W, Shi J-M, Kombo Orsoro E, et al.C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/β-catenin and ERK signaling in streptozocin-induced diabetic nephropathy. FASEB J (2019) 33(5):6551–63. 10.1096/fj.201801865RR [PubMed] [CrossRef] [Google Scholar]
124. Nakai K, Tanaka H, Yamanaka K, takahashi Y, Murakami F, Matsuike R, et al.Effects of C-reactive protein on the expression of matrix metalloproteinases and their inhibitors via Fcγ receptors on 3T3-L1 adipocytes. Int J Med Sci (2017) 14(5):484–93. 10.7150/ijms.18059 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
125. Li H-Y, Wang J, Wu Y-X, Zhang L, Liu Z-P, Filep J, et al.Topological localization of monomeric C-reactive protein determines proinflammatory endothelial cell responses. J Biol Chem (2014) 289(20):14283–90. 10.1074/jbc.M114.555318 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
126. Shephard EG, Anderson R, Rosen O, Myer MS, Fridkin M, Strachan AF, et al.Peptides generated from C-reactive protein by a neutrophil membrane protease. J Immunol (1990) 145:1469–76. [PubMed] [Google Scholar]
127. Shephard EG, Anderson R, Rosen O, Fridkin M.C-reactive protein (CRP) peptides inactivate enolase in human neutrophils leading to depletion of intracellular ATP and inhibition of superoxide generation. Immunology (1992. a) 76(1):79–85. [PMC free article] [PubMed] [Google Scholar]
128. Shephard EG, Kelly SL, Anderson R, Fridkin M.Characterization of neutrophil-mediated degradation of human C-reactive protein and identification of the protease. Clin Exp Immunol (1992. b) 87(3):509–13. 10.1111/j.1365-2249.1992.tb0328.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
129. El Kebir D, Zhang Y, Wang L, Potempa LA, Wu Y, Fournier A, et al.C-reactive protein-derived peptide 201-206 inhibits neutrophil adhesion to endothelial cells and platelets through CD32. J Leukocyte Biol (2011) 90(6):1167–75. 10.1074/jlb.0111032 [PubMed] [CrossRef] [Google Scholar]
130. Rajab IM, Hart PC, Potempa LA.How C-reactive protein structural isoforms with distinctive bioactivities affect disease progression. Front Immunol (2020) 11:2126. 10.3389/fimmu.2020.02126 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
131. Theile JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, et al.A conformational change in C-reactive protein enhances leukocyte recruitment and reactive oxygen species generation in ischemia/reperfusion injury. Front Immunol (2018) 6:675. 10.3389/fimmu.2018.00675 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
132. Thiele JR, Zeller J, Bannasch H, Stark GB, Peter K, Eisenhardt SU.Targeting C-Reactive Protein in Inflammatory Disease by Preventing Conformational Changes. Mediators Inflammation (2015) 2015:372432. 10.1155/2015/372432 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133. Braig D, Nero TL, Koch H-G, Kaiser B, Wang X, Thiele JR, et al.Characterization of transitional changes in the CRP structure leading to the exposure of pro-inflammatory binding sites. Nat Commun (2017) 23:14188. 10.1038/ncomms14188 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
134. Tan C, Huang Y, Shi F, Tan K, Ma Q, Chen Y, et al.C-reactive protein correlates with CT findings and predicts severe COVID-19 early. J Med Virol (2020) 92(7):856–62. 10.1002/jmv.25871 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
135. Birk DE, Silver FH, Trelstad RL.Matrix assembly. In: Hay ED, editor. Cell Biology of Extracellular Matrix, 2nd editionNew York: Plenum Press; (1991). p. 221–54. [Google Scholar]
136. Aumailley M, Gayraud B.Structure and biological activity of the extracellular matrix. J Mol Med (1998) 76:253–65. 10.1007/s001090050215 [PubMed] [CrossRef] [Google Scholar]
137. Yue B.Biology of the extracellular matrix: an overview. J Glaucoma (2014) 23(8):S20–3. 10.1097/IJG.0000000000000108 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
138. Cray C.Acute phase proteins in animals. 2012 Prog Mol Biol Transl Sci (2012) 105:113–50. 10.1016/B978-0-12-394596-9.00005-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
139. Hunt TK.Basic principles of wound healing. J Trauma (1990) 30:S122–128. 10.1097/00005373-199012001-00025 [PubMed] [CrossRef] [Google Scholar]
140. Kim WJ, Gittes GK, Longaker MT.Signal transduction in wound pharmacology. Arch Pharm Res (1998) 21:487–95. 10.1007/BF02975363 [PubMed] [CrossRef] [Google Scholar]
141. Balkwill FR, Mantovani A.Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol (2012) 22(1):33–40. 10.1016/j.semcancer.2011.12.005 [PubMed] [CrossRef] [Google Scholar]
142. Coussens LM, Werb Z.Inflammation and cancer. Nature (2002) 420(6917):860–7. 10.1038/nature01322 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
143. Murata M.Inflammation and cancer. Environ Health Prev Med (2018) 23(1):50. 10.1186/s12199-018-0740-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
144. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA.Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res (2014) 2014:149185. 10.1155/2014/14918 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
145. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A.Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis (2009) 30(7):1073–81. 10.1093/carcin/bgp127 [PubMed] [CrossRef] [Google Scholar]
146. Grivennikov SI, Greten FR, Karin M.Immunity, inflammation, and cancer. Cell (2010) 140(6):883–99. 10.1016/j.cell.2010.01.025 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
147. Giannoni E, Parri M, Chiarugi P.EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal (2012) 16(11):1248–63. 10.1089/ars.2011.4280 [PubMed] [CrossRef] [Google Scholar]
148. Xu J, Lamouille S, Derynck R.TGF-beta-induced epithelial to mesenchymal transition. Cell Res (2009) 19(2):156–72. 10.1038/cr.2009.5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
149. Gilles C, Newgreen D, Sato H, Thompson E.Matrix Metalloproteases and Epithelial-to-Mesenchymal Transition: Implications for Carcinoma Metastasis. In: Madame Curie Bioscience Database. (Austin, TX: Landes Bioscience 2000-2013; (2013). Available at: https://www.ncbi.nlm.nih.gov/books/NBK6387. [Google Scholar]
150. Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD.ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell (2009) 20(8):2207–17. 10.1091/mbc.e08-10-1076 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
151. Bergeman J, Caillier A, Houle F, Gagne LM, Huot ME.Localized translation regulates cell adhesion and transendothelial migration. J Cell Sci (2016) 129(21):4105–17. 10.1242/jcs.191320 [PubMed] [CrossRef] [Google Scholar]
152. Dominguez C, David JM, Palena C.Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Semin Cancer Biol (2017) 47:177–84. 10.1016/j.semcancer.2017.08.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
153. Todoric J, Antonucci L, Karin M.Targeting Inflammation in Cancer Prevention and Therapy. Cancer Prev Res (Phila) (2016) 9(12):895–905. 10.1158/1940-6207.CAPR-16-0209 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
154. Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ.Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget (2016) 7(19):28697–710. 10.18632/oncotarget.7376 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
155. Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, et al.Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res (2016) 365(3):495–506. 10.1007/s00441-016-2464-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
156. Shaw TJ, Martin P.Wound repair at a glance. J Cell Sci (2009) 122(Pt 18):3209–13. 10.1242/jcs.031187 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
157. Gonzalez AC, Costa TF, Andrade ZA, Medrado AR.Wound healing -A literature review. Bras Dermatol (2016) 91(5):614–20. 10.1590/abd1806-4841.20164741 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
158. Guo S, Dipietro LA.Factors affecting wound healing. J Dent Res (2010) 89(3):219–29. 10.1177/0022034509359125 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
159. Mack M.Inflammation and fibrosis. Matrix Biol (2018) 68-69:106–21. 10.1016/j.matbio.2017.11.010 [PubMed] [CrossRef] [Google Scholar]
160. Darby IA, Laverdet B, Bonte F, Desmouliere A.Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Invest Dermatol (2014) 7:301–11. 10.2147/CCID.S50046 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
161. Balkwill F, Capasso M, Hagemann T.The tumor microenvironment at a glance. J Cell Sci (2012) 125(Pt 23):5591–6. 10.1242/jcs.116392 [PubMed] [CrossRef] [Google Scholar]
162. Tao L, Huang G, Song H, Chen Y, Chen L.Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett (2017) 14(3):2611–20. 10.3892/ol.2017.6497 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
163. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R.Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer (2019) 18(1):70. 10.1186/s12943-019-0994-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
164. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, et al.CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation -A target for novel cancer therapy. Cancer Treat Rev (2018) 63:40–7. 10.1016/j.ctrv.2017.11.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
165. Weagel E, Smith C, Liu PG, Robison R, O’Neill K.Macrophage polarization and its role in cancer. J Clin Cell Immunol (2015) 6(4):1–8. 10.4172/2155-9899.1000338 [CrossRef] [Google Scholar]
166. Giannelli G, Antonaci S.Biological and clinical relevance of laminin-5 in cancer. Clin Exp Metastasis (2000) 18(6):439–43. [PubMed] [Google Scholar]
167. Clark A, Vignjevic DM.Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol (2015) 36:13–22. [PubMed] [Google Scholar]
168. Wang JP, Hielscher A.Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J Cancer (2017) 8(4):674–82. [PMC free article] [PubMed] [Google Scholar]
169. Lin Y, Xu J, Lan H.Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol (2019) 12(1):76. 10.1186/s13045-019-0760-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
170. Jung HY, Fattet L, Yang J.Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res (2015) 21(5):962–8. 10.1158/1078-0432.CCR-13-3173 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
171. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P.Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest (2006) 116(6):1561–70. 10.1172/JCI24652 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
172. Neri S, Miyash*ta T, Hashimoto H, Suda Y, Ishibashi M, Kii H, et al.Fibroblast-led cancer cell invasion is activated by epithelial-mesenchymal transition through platelet-derived growth factor BB secretion of lung adenocarcinoma. Cancer Lett (2017) 395:20–30. 10.1016/j.canlet.2017.02.026 [PubMed] [CrossRef] [Google Scholar]
173. Lebrun JJ.The Dual Role of TGF beta in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN Mol Biol (2012) 2012:381428. 10.5402/2012/381428 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
174. Simpson-Haidaris PJ, Rybarczyk B.Tumors and fibrinogen. The role of fibrinogen as an extracellular matrix protein. Ann N Y Acad Sci (2001) 936:406–25. 10.1111/j.1749-6632.2001.tb03525.x [PubMed] [CrossRef] [Google Scholar]
175. Tulotta C, Ottewell P.The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer (2018) 25(7):R421–34. 10.1530/ERC-17-0309 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
176. Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, et al.The significant roles of interleukin-6 and it’s signaling pathway in the immunopathogenesis and treatment of breast cancer. BioMed Pharmacother (2018) 108:1415–24. 10.1016/j.biopha.2018.09.177 [PubMed] [CrossRef] [Google Scholar]
177. Suarez-Carmona M, Lesage J, Cataldo D, Gilles C.EMT and inflammation: inseparable actors of cancer progression. Mol Oncol (2017) 11(7):805–23. 10.1002/1878-0261.12095 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
178. Liu T, Zhou L, Li D, Andl T, Zhang Y.Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front Cell Dev Biol (2019) 7:60. 10.3389/fcell.2019.00060 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
179. Song W, Mazzieri R, Yang T, Gobe GC.Translational Significance for Tumor Metastasis of Tumor-Associated Macrophages and Epithelial-Mesenchymal Transition. Front Immunol (2017) 8:1106. 10.3389/fimmu.2017.01106 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
180. Turner CE, Burridge K.Transmembrane molecular assemblies in cell- extracellular matrix interactions. Curr Opin Cell Biol (1991) 5:849–53. 10.1016/0955-0674(91)90059-8 [PubMed] [CrossRef] [Google Scholar]
181. Damsky CH, Werb Z.Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol (1992) 5:772–81. 10.1016/0955-0674(92)90100-q [PubMed] [CrossRef] [Google Scholar]
182. Roy F, DeBlois C, Doillon CJ.Extracellular matrix analogs as carriers for growth factors: in vitro fibroblast behavior. J BioMed Mat Res (1993) 27:389–97. 10.1002/jbm.820270312 [PubMed] [CrossRef] [Google Scholar]
183. Scott JE.Extracellular matrix, supramolecular organization and shape. J Anat (1995) 187:259–69. [PMC free article] [PubMed] [Google Scholar]
184. Yanagish*ta M.Function of proteoglycans in the extracellular matrix. Acta Pathol Jpn (1993) 43:283–93. 10.1111/j.1440-1827.1993.tb02569.x [PubMed] [CrossRef] [Google Scholar]
185. McCarthy J, Turley EA.Effects of extracellular matrix components on cell locomotion. Crit Rev Oral Biol Med (1993) 4:619–37. 10.1177/10454411930040050101 [PubMed] [CrossRef] [Google Scholar]
186. Lippitz BE, Harris RA.Cytokine patterns in cancer patients: A review of the correlation between interleukin 6 and prognosis. Oncoimmunology (2016) 5(5):e1093722. 10.1080/2162402X.2015.1093722 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
187. Xu J, Yin Z, Cao S, Gao W, Liu L, Yin Y, et al.Systematic review andmeta-analysis on the association between IL-1B polymorphisms andcancer risk. PloS One (2013) 8(5):e63654. 10.1371/journal.pone.0063654 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
188. Zhang L, Li HY, Li W, Shen ZY, Wang YD, Ji SR, et al.An ELISA assay for quantifying monomeric C-reactive protein in plasma. Front Immunol (2018) 9:511. 10.3389/fimmu.2018.00511 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
189. Potempa LA, Rajab IM, Hart PC, Bordon J, Fernandez-Botran R.Insights into the use of C-reactive protein as a diagnostic index of disease severity in COVID-19 infections. Am J Trop Med Hyg (2020) 103(2):561–63. 10.4269/ajtmh.20-0473 [PMC free article] [PubMed] [CrossRef] [Google Scholar]