Abifadel, M., Varret, M., Rabes, J. P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., Derré, A., Villéger, L., Farnier, M., Beucler, I., Bruckert, E., Chambaz, J., Chanu, B., Lecerf, J., Luc, G., Moulin, P., Weissenbach, J., Prat, A., Krempf, M., Junien, C., Seidah, N. G. and Boileau, C. (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154-156.
Agresti, R., Meneghini, E., Baili, P., Minicozzi, P., Turco, A., Cavallo, I., Funaro, F., Amash, H., Berrino, F., Tagliabue, E. and Sant, M. (2016) Association of adiposity, dysmetabolisms, and inflammation with aggressive breast cancer subtypes: a cross-sectional study. Breast Cancer Res. Treat. 157, 179-189.
Akiyama, Y., Griffith, R., Miller, P., Stevenson, G. W., Lund, S., Kanapa, D. J. and Stevenson, H. C. (1988) Effects of adherence, activation and distinct serum proteins on the in vitro human monocyte maturation process. J. Leukoc. Biol. 43, 224-231.
Ames, B. N., Gold, L. S. and Willett, W. C. (1995) The causes and prevention of cancer. Proc. Natl. Acad. Sci. U. S. A. 92, 5258-5265.
Annex, B. H., Denning, S. M., Channon, K. M., Sketch, M. H., Jr., Stack, R. S., Morrissey, J. H. and Peters, K. G. (1995) Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 91, 619-622.
Argilés, J. M., López-Soriano, F. J., Toledo, M., Betancourt, A., Serpe, R. and Busquets, S. (2011) The cachexia score (CASCO): a new tool for staging cachectic cancer patients. J. Cachexia Sarcopenia Muscle 2, 87-93.
Asegaonkar, S. B., Asegaonkar, B. N., Takalkar, U. V., Advani, S. and Thorat, A. P. (2015) C-reactive protein and breast cancer: new insights from old molecule. Int. J. Breast Cancer 2015, 145647.
Baer, P. C., Gauer, S., Wegner, B., Schubert, R. and Geiger, H. (2006) C-reactive protein induced activation of MAP-K and RANTES in human renal distal tubular epithelial cells in vitro. Clin. Nephrol. 66, 177-183.
Balkwill, F. and Mantovani, A. (2001) Inflammation and cancer: back to Virchow?. Lancet 357, 539-545.
Bello, G., Cailotto, F., Hanriot, D., Kolopp-Sarda, M. N., Latger-Cannard, V., Hess, K., Zannad, F., Longrois, D. and Ropars, A. (2008) C-reactive protein (CRP) increases VEGF-A expression in monocytic cells via a PI3-kinase and ERK1/2 signaling dependent pathway. Atherosclerosis 200, 286-293.
Bian, F., Yang, X. Y., Xu, G., Zheng, T. and Jin, S. (2019) CRP-induced NLRP3 inflammasome activation increases LDL transcytosis across endothelial cells. Front. Pharmacol. 10, 40.
Bisoendial, R. J., Boekholdt, S. M., Vergeer, M., Stroes, E. S. and Kastelein, J. J. (2010) C-reactive protein is a mediator of cardiovascular disease. Eur. Heart J. 31, 2087-2091.
Blot, W. J., Li, J. Y., Taylor, P. R., Guo, W., Dawsey, S., Wang, G. Q., Yang, C. S., Zheng, S., Gail, M., Li, G., Yu, Y., Liu, B., Tangrea, J., Sun, Y., Liu, F., Fraumeni, J. F., Zhang, Y., Jr. and Li, B. (1993) Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J. Natl. Cancer Inst. 85, 1483-1492.
Bogaty, P., Brophy, J. M., Noel, M., Boyer, L., Simard, S., Bertrand, F. and Dagenais, G. R. (2004) Impact of prolonged cyclooxygenase-2 inhibition on inflammatory markers and endothelial function in patients with ischemic heart disease and raised C-reactive protein: a randomized placebo-controlled study. Circulation 110, 934-939.
Bokhari, A. and Tiscornia-Wasserman, P. G. (2017) Cytology diagnosis of metastatic clear cell renal cell carcinoma, synchronous to pancreas, and metachronous to thyroid and contralateral adrenal: report of a case and literature review. Diagn. Cytopathol. 45, 161-167.
Boras, E., Slevin, M., Alexander, M. Y., Aljohi, A., Gilmore, W., Ashworth, J., Krupinski, J., Potempa, L. A., Abdulkareem, Elobeid, A. and Matou-Nasri, S. (2014) Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway. Cytokine 69, 165-179.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424.
Calle, E. E. and Kaaks, R. (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579-591.
Cervello, M. and Montalto, G. (2006) Cyclooxygenases in hepatocellular carcinoma. World J. Gastroenterol. 12, 5113-5121.
Chambers, A. F., Groom, A. C. and MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563-572.
Chang, M. K., Hartvigsen, K., Ryu, J., Kim, Y. and Han, K. H. (2012) The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine. J. Inflamm. (Lond.) 9, 42.
Chen, J., Gu, Z. and Wu, M. (2016) C-reactive protein can upregulate VEGF expression to promote ADSC-induced angiogenesis by activating HIF-1α via CD64/PI3k/Akt and MAPK/ERK signaling pathways. Stem Cell Res. Ther. 7, 114.
Chen, Y., Wang, J., Yao, Y., Yuan, W., Kong, M., Lin, Y., Geng, D. and Nie, R. U. (2009) Crp regulates the expression and activity of tissue factor as well as tissue factor pathway inhibitor via NF-kappaB and ERK 1/2 MAPK pathway. FEBS Lett. 583, 2811-2818.
Cirillo, P., Golino, P., Calabro, P., Cali, G., Ragni, M., De Rosa, S., Cimmino, G., Pacileo, M., De Palma, R., Forte, L., Gargiulo, A., Corigliano, F. G., Angri, V., Spagnuolo, R., Nitsch, L. and Chiariello, M. (2005) C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc. Res. 68, 47-55.
Coussens, L. M. and Werb, Z. (2002) Inflammation and cancer. Nature 420, 860-867.
Cui, C. J., Li, S., Zhu, C. G., Sun, J., Du, Y., Zhang, Y., Wu, N., Guo, Y., Xu, R., Gao, Y. and Li, J. (2016) Enhanced pro-protein convertase subtilisin/kexin type 9 expression by C-reactive protein through p38MAPK-HNF1α pathway in HepG2 cells. J. Cell. Mol. Med. 20, 2374-2383.
Dalpiaz, O., Luef, T., Seles, M., Stotz, M., Stojakovic, T., Pummer, K., Zigeuner, R., Hutterer, G. C. and Pichler, M. (2017) Critical evaluation of the potential prognostic value of the pretreatment-derived neutrophil-lymphocyte ratio under consideration of C-reactive protein levels in clear cell renal cell carcinoma. Br. J. Cancer 116, 85-90.
Dasari, A., Shen, C., Halperin, D., Zhao, B., Zhou, S., Xu, Y., Shih, T. and Yao, J. C. (2017) Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3, 1335-1342.
Daskalakis, K. (2021) Functioning and nonfunctioning pNENs. Curr. Opin. Endocr. Metab. Res. 18, 284-290.
Dehghan, A., Dupuis, J., Barbalic, M., Bis, J. C., Eiriksdottir, G., Lu, C., Pellikka, N., Wallaschofski, H., Kettunen, J., Henneman, P., Baumert, J., Strachan, D. P., Fuchsberger, C., Vitart, V., Wilson, J. F., Paré, G., Naitza, S., Rudock, M. E., Surakka, I., de Geus, E. J., Alizadeh, B. Z., Guralnik, J., Shuldiner, A., Tanaka, T., Zee, R. Y., Schnabel, R. B., Nambi, V., Kavousi, M., Ripatti, S., Nauck, M., Smith, N. L., Smith, A. V., Sundvall, J., Scheet, P., Liu, Y., Ruokonen, A., Rose, L. M., Larson, M. G., Hoogeveen, R. C., Freimer, N. B., Teumer, A., Tracy, R. P., Launer, L. J., Buring, J. E., Yamamoto, J. F., Folsom, A. R., Sijbrands, E. J., Pankow, J., Elliott, P., Keaney, J. F., Sun, W., Sarin, A. P., Fontes, J. D., Badola, S., Astor, B. C., Hofman, A., Pouta, A., Werdan, K., Greiser, K. H., Kuss, O., Meyer, zu Schwabedissen, H. E., Thiery, J., Jamshidi, Y., Nolte, I. M., Soranzo, N., Spector, T. D., Völzke, H., Parker, A. N., Aspelund, T., Bates, D., Young, L., Tsui, K., Siscovick, D. S., Guo, X., Rotter, J. I., Uda, , Schlessinger, D., Rudan, I., Hicks, A. A., Penninx, B. W., Thorand, B., Gieger, C., Coresh, J., Willemsen, G., Harris, T. B., Uitterlinden, A. G., Järvelin, M. R., Rice, K., Radke, D., Salomaa, V., Willems, van Dijk, K., Boerwinkle, E., Vasan, R. S., Ferrucci, L., Gibson, Q. D., Bandinelli, S., Snieder, H., Boomsma, D. I., Xiao, X., Campbell, H., Hayward, C., Pramstaller, P. P., van Duijn, C. M., Peltonen, L., Psaty, B. M., Gudnason, V., Ridker, P. M., Homuth, G., Koenig, W., Ballantyne, C. M., Witteman, J. C. M., Benjamin, E. J., Perola, M. and Chasman, D. I. (2011) Meta-analysis of genome-wide association studies in > 80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation 123, 731-738.
Devaraj, S., Du Clos, T. W. and Jialal, I. (2005) Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. Arterioscler. Thromb. Vasc. Biol. 25, 1359-1363.
Dolan, R. D., Lim, J., McSorley, S. T., Horgan, P. G. and McMillan, D. C. (2017) The role of the systemic inflammatory response in predicting outcomes in patients with operable cancer: systematic review and meta-analysis. Sci. Rep. 7, 16717.
Dong, Q. and Wright, J. R. (1996) Expression of C-reactive protein by alveolar macrophages. J. Immunol. 156, 4815-4820.
Dossus, L., Jimenez-Corona, A., Romieu, I., Boutron-Ruault, M. C., Boutten, A., Dupré, T., Fagherazzi, G., Clavel-Chapelon, F. and Mesrine, S. (2014) C-reactive protein and postmenopausal breast cancer risk: results from the E3N cohort study. Cancer Causes Control 25, 533-539.
Dranoff, G. (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11-22.
Elston, C. W. and Ellis, I. O. (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403-410.
See AlsoHow useful are inflammatory marker tests in primary care? - ARC WestC-reactive protein point-of-care testing and complementary strategies to improve antibiotic stewardship in children with acute respiratory infections in primary careSerial C-reactive Protein Monitoring in Prosthetic Joint Infection: A Powerful Predictor or Potentially Pointless?Engelman, J. A., Luo, J. and Cantley, L. C. (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606-619.
Falconer, J. S., Fearon, K. C., Ross, J. A., Elton, R., Wigmore, S. J., Garden, O. J. and Carter, D. C. (1995) Acute-phase protein response and survival duration of patients with pancreatic cancer. Cancer 75, 2077-2082.
Febvre-James, M., Lecureur, V. and Fardel, O. (2020) Potent repression of C-reactive protein (CRP) expression by the JAK1/2 inhibitor ruxolitinib in inflammatory human hepatocytes. Inflamm. Res. 69, 51-62.
Feng, C., Xiong, Z., Jiang, H., Ding, Q., Fang, Z. and Hui, W. (2016) Genetic alteration in notch pathway is associated with better prognosis in renal cell carcinoma. Biofactors 42, 41-48.
Flum, A. S., Hamoui, N., Said, M. A., Yang, X. J., Casalino, D. D., McGuire, B. B., Perry, K. T. and Nadler, R. B. (2016) Update on the diagnosis and management of renal angiomyolipoma. J. Urol. 195, 834-846.
Folkman, J. (1971) Tumor angiogenesis theraperutic implications. N. Engl. J. Med. 285, 1182-1186.
Frydenberg, H., Thune, I., Lofterod, T., Mortensen, E. S., Eggen, A. E., Risberg, T., Wist, E. A., Flote, V. G., Furberg, A., Wilsgaard, T., Akslen, L. A. and McTiernan, A. (2016) Pre-diagnostic high-sensitive C-reactive protein and breast cancer risk, recurrence, and survival. Breast Cancer Res. Treat. 155, 345-354.
Fujita, T., Nishi, M., Tabata, K., Matsumoto, K., Yoshida, K. and Iwamura, M. (2016) Overall prognostic impact of C-reactive protein level in patients with metastatic renal cell carcinoma treated with sorafenib. Anticancer Drugs 27, 1028-1032.
Ghosh, S. and Karin, M. (2002) Missing pieces in the NF-κB puzzle. Cell. 109, 81-96.
Gómez-Valenzuela, F., Escobar, E., Pérez-Tomás, R. and Montecinos, V. P. (2021) The inflammatory profile of the tumor microenvironment, orchestrated by cyclooxygenase-2, promotes epithelial-mesenchymal transition. Front. Oncol. 11, 686792.
Gong, T., Liu, L., Jiang, W. and Zhou, R. (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95-112.
Grad, E. and Danenberg, H. D. (2013) C-reactive protein and atherothrombosis: cause or effect?. Blood Rev. 27, 23-29.
Grivennikov, S. I., Greten, F. R. and Karin, M. (2010) Immunity, inflammation, and cancer. Cell 140, 883-899.
Greten, F. and Grivennikov, S. I. (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27-41.
Guo, S., He, X., Chen, Q., Yang, G., Yao, K., Dong, P., Ye, Y., Chen, D., Zhang, Z., Qin, Z., Liu, Z., Xue, Y., Zhang, M., Liu, R., Zhou, F. and Han, H. (2017) The C-reactive protein/albumin ratio, a validated prognostic score, predicts outcome of surgical renal cell carcinoma patients. BMC Cancer 17, 171.
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.
Hansen, I. S., Krabbendam, L., Bernink, J. H., Loayza-Puch, F., Hoepel, W., van Burgsteden, J. A., Kuijper, E. C., Buskens, C. J., Bemelman, W. A., Zaat, S. A. J., Agami, R., Vidarsson, G., van den Brink, G. R., de Jong, E. C., Wildenberg, M. E., Baeten, D., Everts, B. and den Dunnen, J. (2018) FcαRI co-stimulation converts human intestinal CD103+ dendritic cells into pro-inflammatory cells through glycolytic reprogramming. Nat. Commun. 9, 863.
Hashimoto, K., Ikeda, Y., Korenaga, D., Tanoue, K., Hamatake, M., Kawasaki, K., Yamaoka, T., Iwatani, Y., Akazawa, K. and Takenaka, K. (2005) The impact of preoperative serum C-reactive protein on the prognosis of patients with hepatocellular carcinoma. Cancer 103, 1856-1864.
Hansson, G. K. (2005) Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685-1695.
Hattori, Y., Matsumura, M. and Kasai, K. (2003) Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc. Res. 58, 186-195.
He, Y., Sun, M. M., Zhang, G. G., Yang, J., Chen, K. S., Xu, W. W. and Li, B. (2021) Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 6, 425.
Hojilla, C. V., Wood, G. A. and Khokha, R. (2008) Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res. 10, 205.
Hong, T., Liu, A., Cai, D., Zhang, Y., Hua, D., Hang, X. and Wu, X. (2013) Preoperative serum C-reactive protein levels and early breast cancer by BMI and menopausal status. Cancer Invest. 31, 279-285.
Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J. and Thun, M. J. (2007) Cancer statistics. CA Cancer J. Clin. 57, 43-66.
Kim, E. S., Cha, Y., Ham, M., Jung, J., Kim, S. G., Hwang, S., Kleemann, R. and Moon, A. (2014) Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression. Oncogene 33, 3583-3593.
Kim, E. S., Kim, S. Y., Koh, M., Lee, H. M., Kim, K., Jung, J., Kim, H. S., Moon, W. K., Hwang, S. and Moon, A. (2018) C-reactive protein binds to integrin α2 and Fcγ receptor I, leading to breast cell adhesion and breast cancer progression. Oncogene 4, 28-38.
Kishi, T., Nakamura, A., Itasaka, S., Shibuya, K., Matsumoto, S., Kanai, M., Kodama, Y., Takaori, K., Mizowaki, T. and Hiraoka, M. (2015) Pretreatment C-reactive protein level predicts outcome and patterns of failure after chemoradiotherapy for locally advanced pancreatic cancer. Pancreatology 15, 694-700.
Kleemann, R., Gervois, P. P., Verschuren, L., Staels, B., Princen, H. M. and Kooistra, T. (2003) Fibrates downregulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation. Blood 101, 545-551.
Krupinski, J., Turu, M. M., Martinez-Gonzalez, J., Carvajal, A., Juan-Babot, J. O., Iborra, E., Slevin, M., Rubio, F. and Badimon, L. (2006) Endogenous expression of C-reactive protein is increased in active (ulcerated oncomplicated) human carotid artery plaques. Stroke 37, 1200-1204.
Kumar, H., Kawai, T. and Akira, S. (2009) Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 388, 621-625.
Lee, J. G., Cho, B. C., Bae, M. K., Lee, C. Y., Park, I. K., Kim, D. J., Ahn, S. V. and Chung, K. Y. (2009) Preoperative C-reactive protein levels are associated with tumor size and lymphovascular invasion in resected non-small cell lung cancer. Lung Cancer 63, 106-110.
Levy, D. E. and Darnell, J. E., Jr. (2002) Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651-662.
Li, J., Luo, S. H., Tang, Y. and Li, J. J. (2014) C-reactive protein induces pulmonary artery smooth cell proliferation via modulation of ERK1/2, Akt and NF-kappaB pathways. Clin. Lab. 60, 1357-1363.
Liang, Y. J., Shyu, K. G., Wang, B. W. and Lai, L. P. (2006) C-reactive protein activates thenuclear factor-kB pathway andinduces vascular cell adhesion molecule-1expression through CD32 inhuman umbilical vein endothelial cells andaortic endothelial cells. J. Mol. Cell. Cardiol. 40, 412-420.
Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, 868-874.
Lithgow, D., Nyamathi, A., Elashoff, D., Martinez-Maza, O. and Covington, C. (2006) C-reactive protein in nipple aspirate fluid. Nurs. Res. 65, 418-425.
Liu, X. Y., Yan, F., Niu, L. L., Chen, Q. N., Zheng, H. R. and Li, J. Y. (2016) Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta. Nanoscale 8, 6975-6980.
Ma, Z., Qi, Z., Shan, Z., Li, J., Yang, J. and Xu, Z. (2017) The role of CRP and ATG9B expression in clear cell renal cell carcinoma. Biosci. Rep. 37, BSR20171082.
Maekawa, H. and Tollefsen, D. M. (1996) Role of proposed serpin-enzyme complex receptor recognition sites in binding and internalization of thrombin-heparin cofactor II complexes by hepatocytes. J. Biol. Chem. 271, 18604-18609.
Majello, B., Arcone, R., Toniatti, C. and Ciliberto, G. (1990) Constitutive and IL-6 induced nuclear factors that interact with the human C-reactive protein promoter. EMBO J. 9, 457-465.
Mannello, F., Tonti, G. A., Simone, P., Ligi, D. and Medda, V. (2010) Iron-binding proteins and C-reactive protein in nipple aspirate fluids: role of iron-driven inflammation in breast cancer microenvironment?. Am. J. Transl. Res. 3, 100-113.
Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.
Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Cancer-related inflammation. Nature 454, 436-444.
Martín-Timón, I., Sevillano-Collantes, C., Segura-Galindo, A. and Del Cañizo-Gómez, F. J. (2014) Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?. World J. Diabetes 5, 444-470.
McCarthy, C. G., Goulopoulou, S., Wenceslau, C. F., Spitler, K., Matsumoto, T. and Webb, R. C. (2014) Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am. J. Physiol. Heart Circ. Physiol. 306, H184-H196.
Metzger-Filho, O., Tutt, A., de Azambuja, E., Saini, K. S., Viale, G., Loi, S., Bradbury, I., Bliss, J. M., Azim, H. J., Jr., Ellis, P., Di Leo, A., Baselga, J., Sotiriou, C. and Piccart-Gebhart, M. (2012) Dissecting the heterogeneity of triple-negative breast cancer. J. Clin. Oncol. 30, 1879-1887.
Moscat, J., Diaz-Meco, M. T. and Rennert, P. (2003) NFκB activation by protein kinase C isoforms and B-cell function. EMBO Rep. 4, 31-36.
Nakachi, K., Furuse, J., Ishii, H., Suzuki, E. and Yoshino, M. (2007) Prognostic factors in patients with gemcitabine-refractory pancreatic cancer. Jpn. J. Clin. Oncol. 37, 114-120.
Newling, M., Sritharan, L., van der Ham, A. J., Hoepel, W., Fiechter, R. H., de Boer, L., Zaat, S. A. J., Bisoendial, R. J., Baeten, D. L. P., Everts, B. and den Dunnen, J. (2019) C-reactive protein promotes inflammation through FcγR-induced glycolytic reprogramming of human macrophages. J. Immunol. 203, 225-235.
Nikolaou, K., Sarris, M. and Talianidis, I. (2013) Molecular pathways: the complex roles of inflammation pathways in the development and treatment of liver cancer. Clin. Cancer Res. 19, 2810-2816.
Overall, C. M. and Lopez-Otin, C. (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer 2, 657-672.
Ozturk, H. (2015) Bilateral synchronous adrenal metastases of renal cell carcinoma: a case report and review of the literature. Oncol. Lett. 9, 1897-1901.
Paffen, E., Vos, H. L. and Bertina, R. M. (2004) C-reactive protein does not directly induce tissue factor in human monocytes. Arterioscler. Thromb. Vasc. Biol. 24, 975-981.
Park, W. B., Lee, K. D., Lee, C. S., Jang, H. C., Kim, H. B., Lee, H. S., Oh, M. and Choe, K. W. (2005) Production of C-reactive protein in Escherichia coli-infected patients with liver dysfunction due to liver cirrhosis. Diagn. Microbiol. Infect. Dis. 51, 227-230.
Pasceri, V., Willerson, J. T. and Yeh, E. T. (2000) Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102, 2165-2168.
Pasceri, V., Cheng, J. S., Willerson, J. T. and Yeh, E. T. (2001) Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 103, 2531-2534.
Pawashe, A. B., Golino, P., Ambrosio, G., Migliaccio, F., Ragni, M., Pascucci, I., Chiariello, M., Bach, R., Garen, A. and Konigsberg, W. K. (1994) A monoclonal antibody against rabbit tissue factor inhibits thrombus formation in stenotic injured rabbit carotid arteries. Circ. Res. 74, 56-63.
Peña, E., de la Torre, R., Arderiu, G., Slevin, M. and Badimon, L. (2016) mCRP triggers angiogenesis by inducing F3 transcription and TF signalling in microvascular endothelial cells. Thromb. Haemost. 117, 357-370.
Pepys, M. B. and Hirschfield, G. M. (2003) C-reactive protein: a critical update. J. Clin. Invest. 111, 1805-1812.
Pierce, B. L., Ballard-Barbash, R., Bernstein, L., Baumgartner, R. N., Neuhouser, M. L., Wener, M. H., Baumgartner, K. B., Gilliland, F. D., Sorensen, B. E., McTiernan, A. and Ulrich, C. M. (2009) Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 27, 3437-3444.
Pine, J. K., Fusai, K. G., Young, R., Sharma, D., Davidson, B. R., Menon, K. V. and Rahman, S. H. (2009) Serum C-reactive protein concentration and the prognosis of ductal adenocarcinoma of the head of pancreas. Eur. J. Surg. Oncol. 35, 605-610.
Platz, E. A. and De Marzo, A. M. (2004) Epidemiology of inflammation and prostate cancer. J. Urol. 171, S36-S40.
Prakash, A. V., Park, I. H., Park, J. W., Bae, J. P., Lee, G. S. and Kang, T. J. (2023) NLRP3 inflammasome as therapeutic targets in inflammatory diseases. Biomol. Ther. (Seoul) 31, 395-401.
Raaz-Schrauder, D., Ekici, A. B., Klinghammer, L., Stumpf, C., Achenbach, S., Herrmann, M., Reis, A. and Garlichs, C. D. (2014) The proinflammatory effect of c-reactive protein on human endothelial cells depends on the Fcγ IIa genotype. Thromb. Res. 133, 426-432.
Ravishankaran, P. and Karunanithi, R. (2011) Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J. Surg. Oncol. 9, 18.
Roxburgh, C. S. D. and McMillan, D. C. (2010) Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future Oncol. 6, 149-163.
Schecter, A. D., Giesen, P. L., Taby, O., Rosenfield, C. L., Rossikhina, M., Fyfe, B. S., Kohtz, D. S., Fallon, J. T., Nemerson, Y. and Taubman, M. B. (1997) Tissue factor expression in human arterial smooth muscle cells. J. Clin. Invest. 100, 2276-2285.
Schenten, D. and Medzhitov, R. (2011) The control of adaptive immune responses by the innate immune system. Adv. Immunol. 109, 87-124.
Schimmack, S., Yang, Y., Felix, K., Herbst, M., Li, Y., Schenk, M., Bergmann, F., Hackert, T., Strobel, O. and Yang, Y. (2019) C-reactive protein (CRP) promotes malignant properties in pancreatic neuroendocrine neoplasms. Endocr. Connect. 8, 1007-1019.
Serbulea, V., Upchurch, C. M., Ahern, K. W., Bories, G., Voigt, P., DeWeese, D. E., Meher, A. K., Harris, T. E. and Leitinger, N. (2018) Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol. Metab. 7, 23-34.
Shibutani, M., Maeda, K., Nagahara, H., Iseki, Y., Ikeya, T. and Hirakawa, K. (2016) Prognostic significance of the preoperative ratio of C-reactive protein to albumin in patients with colorectal cancer. Anticancer Res. 36, 995-1001.
Shrotriya, S., Walsh, D., Bennani-Baiti, N., Thomas, S. and Lorton, C. (2015) C-reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLoS One 10, e0143080.
Siegel, R. L., Miller, K. D. and Jemal, A. (2016) Cancer statistics, 2016. CA Cancer J. Clin. 66, 7-30.
Siegel, R. L., Miller, K. D. and Jemal, A. (2019) Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34.
Sieghart, W., Pinter, M., Hucke, F., Graziadei, I., Schöniger-Hekele, M., Müller, C., Vogel, W., Trauner, M. and Peck-Radosavljevic, M. (2013) Single determination of C-reactive protein at the time of diagnosis predicts long-term outcome of patients with hepatocellular carcinoma. Hepatology 57, 2224-2234.
Singh, U., Devaraj, S. and Jialal, I. (2005) C-reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells: evidence that c-reactive protein is a procoagulant. Arterioscler. Thromb. Vasc. Biol. 25, 2216-2221.
Slevin, M., Matou-Nasri, S., Turu, M., Luque, A., Rovira, N. and Badimon, L. (2010) Modified C-reactive protein is expressed by stroke neovessels and is a potent activator of angiogenesis in vitro. Brain Pathol. 20, 151-165.
Slevin, M., Matou, S., Zeinolabediny, Y., Corpas, R., Weston, R., Liu, D., Boras, E., Di Napoli, M., Petcu, E., Sarroca, S., Popa-Wagner, A., Love, S., Font, M. A., Potempa, L. A., Al-Baradie, R., Sanfeliu, C., Revilla, S., Badimon, L. and Krupinski, J. (2015) Monomeric C-reactive protein-a key molecule driving development of Alzheimer's disease associated with brain ischaemia?. Sci. Rep. 5, 13281.
Su, T. T., Guo, B., Kawakami, Y., Sommer, K., Chae, K., Humphries, L. A., Kato, R. M., Kang, S., Patrone, L., Wall, R., Teitell, M., Leitges, M., Kawakami, T. and Rawlings, D. J. (2002) PKC-β controls IκB kinase lipid raft recruitment and activation in response to BCR signaling. Nat. Immunol. 3, 780-786.
Subbaramaiah, K., Morris, P. G., Zhou, X. K., Morrow, M., Du, B., Giri, D., Kopelovich, L., Hudis, C. A. and Dannenberg, A. J. (2012) Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov. 2, 356-365.
Sun, J., Russell, C. C., Scarlett, C. J. and McCluskey, A. (2020) Small molecule inhibitors in pancreatic cancer. RSC Med. Chem. 11, 164-183.
Sundgren, N. C., Zhu, W., Yuhanna, I. S., Chambliss, K. L., Ahmed, M., Tanigaki, K., Umetani, M., Mineo, C. and Shaul, P. W. (2011) Coupling of Fcγ receptor I to Fcγ receptor IIb by src kinase mediates c-reactive protein impairment of endothelial function. Circ. Res. 109, 1132-1140.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.
Tabas, I., García-Cardeña, G. and Owens, G. K. (2015) Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209, 13-22.
Takeuchi, O. and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820.
Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. and Lotze, M. T. (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158-175.
Tang, Z., Sheng, H., Zheng, X., Ying, L., Wu, L., Liu, D. and Liu, G. (2015) Upregulation of circulating cytokeratin 20, urokinase plasminogen activator and C-reactive protein is associated with poor prognosis in gastric cancer. Mol. Clin. Oncol. 3, 1213-1220.
Terada, K., Hayashi, G. and Hokama, Y. (1990) C-reactive protein and 6-keto prostaglandin F 1-alpha in patients with gynecologic cancer. Gynecol. Oncol. 36, 212-214.
Toi, M., Inada, K., Suzuki, H. and Tominaga, T. (1995) Tumor angiogenesis in breast cancer: its importance as a prognostic indicator and the association with vascular endothelial growth factor expression. Breast Cancer Res. Treat. 36, 193-204.
Toniatti, C., Demartis, A., Monaci, P., Nicosia, A. and Ciliberto, G. (1990) Synergistic transactivation of the human C-reactive protein promoter by transcription factor HNF-1 binding at two distinct sites. EMBO J. 9, 4467-4475.
Turu, M. M., Slevin, M., Matou, S., West, D., Rodriguez, C. and Luque, A. (2008) C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression. BMC Cell Biol. 9, 47.
van den Eijnden, M. M., Steenhauer, S. I., Reitsma, P. H. and Bertina, R. M. (1997) Tissue factor expression during monocyte-macrophage differentiation. Thromb. Heamost. 77, 1129-1136.
Varga, J. and Greten, F. R. (2017) Cell plasticity in epithelial homeostasis and tumorigenesis. Nat. Cell Biol. 19, 1133-1141.
Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. and Tsatsanis, C. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 198, 1006-1014.
Verma, A. K., Kumar, S., Kumar, N., Verma, R. K. and Singh, M. (2012) Study of coronary artery atherosclerosis in sudden deaths and its medicolegal relevance. J. Indian Acad. Forensic Med. 34, 132-134.
Volanakis, J. E. (2001) Human C-reactive protein: expression, structure, and function. Mol. Immunol. 38, 189-197.
Wang, C. S. and Sun, C. F. (2009) C-reactive protein and malignancy: clinico-pathological association and therapeutic implication. Chang Gung Med. J. 32, 471-482.
Wang, H. R., Chen, D. L., Zhao, M., Shu, S. W., Xiong, S. X., Gan, X. D., Chao, S. and Cao, J. (2012) C-reactive protein induces interleukin-6 and thrombospondin-1 protein and mRNA expression through activation of nuclear factor-ĸB in HK-2 cells. Kidney Blood Press. Res. 35, 211-219.
Weinhold, B. and Ruther, U. (1997) Interleukin-6-dependent and -independent regulation of the human C-reactive protein gene. Biochem. J. 327, 425-429.
Wiese, D., Kampe, K., Waldmann, J., Heverhagen, A. E., Bartsch, D. K. and Fendrich, V. (2016) C-reactive protein as a new prognostic factor for survival in patients with pancreatic neuroendocrine neoplasia. J. Clin. Endocrinol. Metab. 101, 937-944.
Wigmore, S. J., Fearon, K. C., Maingay, J. P., Lai, P. B. and Ross, J. A. (1997) Interleukin-8 can mediate acute-phase protein production by isolated human hepatocytes. Am. J. Physiol. 273, 720-726.
Wilcox, J. N., Smith, K. M., Schwartz, S. and Gordon, D. (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. U. S. A. 86, 2839-2843.
Wolf, S., Obolonczyk, L., Sworczak, K., Czapiewski, P. and Sledzinski, Z. (2015) Renal cell carcinoma metastases to the pancreas and the thyroid gland 19 years after the primary tumour. Prz. Gastroenterol. 10, 185-189.
Wu, Y., Fu, X., Zhu, X., He, X., Zou, C., Han, Y., Xu, M., Huang, C., Lu, X. and Zhao, Y. (2011) Prognostic role of systemic inflammatory response in renal cell carcinoma: a systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 137, 887-896.
Yasojima, K., Schwab, C., McGeer, E. G. and McGeer, P. L. (2001) Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 158, 1039-1051.
Yu, H., Pardoll, D. and Jove, R. (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 361-367.
Zavodszky, E., Vicinanza, M. and Rubinsztein, D. C. (2013) Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett. 587, 1988-1996.
Zhang, Z., Yang, Y., Hill, M. A. and Wu, J. (2012) Does c-reactive protein contribute to atherothrombosis via oxidant-mediated release of pro-thrombotic factors and activation of platelets?. Front. Physiol. 3, 433.
FAQs
What level of C-reactive protein indicates cancer? ›
Elevated CRP levels (> 10 μg/ml) are associated with active, advanced cancer disease. 3. Elevated CRP levels (> 10 μg/ml) can be diagnostic of complicating pathologies (e.g. infections).
What is the C-reactive pathway? ›C-reactive protein (CRP) is an acute-phase serum protein and a mediator of innate immunity. CRP binds to microbial polysaccharides and to ligands exposed on damaged cells. Binding of CRP to these substrates activates the classical complement pathway leading to their uptake by phagocytic cells.
What are the symptoms of high CRP levels? ›Or it may be a potentially life-threatening condition called sepsis or blood poisoning. Symptoms of sepsis may include fever and chills, headache, pain, nausea, vomiting, confusion, rash, and shortness of breath. The level of CRP in your blood goes up within a few hours of a serious infection.
How quickly does C-reactive protein change? ›C-reactive protein levels rise more quickly than ESR (increasing within 2 hours and peaking at 48 hours) and are less affected by anemia, pregnancy, and elevated protein levels.
What level of C-reactive protein is concerning? ›You are at low risk of developing cardiovascular disease if your hs-CRP level is lower than 1.0 mg/L. You are at average risk of developing cardiovascular disease if your levels are between 1.0 mg/L and 3.0 mg/L. You are at high risk for cardiovascular disease if your hs-CRP level is higher than 3.0 mg/L.
What is an alarming CRP? ›Generally, a CRP level of less than 10 mg/L is considered normal. CRP levels between 10 and 100 mg/L indicate mild to moderate inflammation, while levels above 100 mg/L indicate severe inflammation.
What does it mean when you have C-reactive protein? ›C-reactive protein (CRP) is a protein made by the liver. The level of CRP increases when there's inflammation in the body. A simple blood test can check your C-reactive protein level. A high-sensitivity C-reactive protein (hs-CRP) test is more sensitive than a standard C-reactive protein test.
What is the protein C pathway? ›The protein C anticoagulant pathway serves as a major system for controlling thrombosis, limiting inflammatory responses, and potentially decreasing endothelial cell apoptosis in response to inflammatory cytokines and ischemia.
What causes the body to release C-reactive protein into the bloodstream? ›Your liver releases more CRP into your bloodstream if you have inflammation in your body. High levels of CRP may mean you have a serious health condition that causes inflammation. Inflammation is your body's way of protecting your tissues and helping them heal from an injury, infection, or other disease.
What will doctor do if CRP is high? ›If you're at high risk of cardiovascular disease and your test results show high CRP, your doctor may suggest a statin or other cholesterol-lowering medication. Vitamin C has also been explored as a way to lower CRP levels for people who have an elevated risk of cardiovascular disease.
What kind of inflammation causes high CRP? ›
- autoimmune conditions, including rheumatoid arthritis (RA), lupus, and certain types of inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis.
- pericarditis, which is inflammation of the lining of the heart.
If your CRP levels are high, talk to your provider about what you can do to bring them down. You might be able to lower your CRP levels naturally by changing your diet, but you may need help from a medical treatment like statin medications.
What cancers cause high CRP? ›Elevated CRP levels have been found to be associated with several cancers, including breast, lung, gastric, and colorectal cancer, hepatocellular carcinoma, and renal carcinoma (Roxburgh and McMillan, 2010; Wu et al., 2011).
What medication is used for high CRP levels? ›Cyclooxygenase inhibitors (aspirin, rofecoxib, celecoxib), platelet aggregation inhibitors (clopidogrel, abciximab), lipid lowering agents (statins, ezetimibe, fenofibrate, niacin, diets), beta-adrenoreceptor antagonists and antioxidants (vitamin E), as well as angiotensin converting enzyme (ACE) inhibitors (ramipril, ...
What is the timeline of C reactive protein? ›In healthy individuals, the CRP level is generally below 2 mg/L but can be up to 10 mg/L. There may be slight variation with age, sex, and race [8]. It has a half-life of approximately 19 hours, begins to rise after 12–24 hours, and peaks within 2–3 days.
What are the inflammatory markers for cancer? ›The authors found consistent evidence for the potential association of four genetically proxied inflammatory markers (pro-adrenomedullin, interleukin-23 receptor, prothrombin, and interleukin-1 receptor-like 1) in the risk of four site-specific cancers.
What do doctors look for in blood work for cancer? ›Tumour marker blood tests
Tumour markers are substances that might be raised if there is a cancer. They're usually proteins. They can be found in the blood, urine or body tissues. You might also hear them called biomarkers or molecular markers.
C-reactive protein (CRP) concentrations have been associated with advanced non-small-cell lung cancer and poor prognosis. We characterized the association between anticancer drug exposure, tumor size as a marker of tumor dynamics, and CRP as a marker of inflammation and derived different predictors.
What level of CRP indicates arthritis? ›C-reactive protein level (in milligrams per liter of blood) in adults | What it means |
---|---|
10.0–100.0 | moderately elevated, which signifies infection or an inflammatory condition such as rheumatoid arthritis (RA), Crohn's disease, or lupus |