Diagnostic imaging of cardiac amyloidosis (2024)

  • Falk, R. H., Kruger, J. & Quarta, C. C. Senile systemic amyloidosis is a markedly underdiagnosed cardiomyopathy: experience of a cardiac amyloidosis program [abstract]. J. Am. Coll. Cardiol. 61 (Suppl. 10), E1241 (2013).

    Google Scholar

  • Maurer, M. S., Elliott, P., Comenzo, R., Semigran, M. & Rapezzi, C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation 135, 1357–1377 (2017).

    PubMed Central Google Scholar

  • Wechalekar, A. D., Gillmore, J. D. & Hawkins, P. N. Systemic amyloidosis. Lancet 387, 2641–2654 (2016).

    CAS Google Scholar

  • Pinney, J. H. et al. Systemic amyloidosis in England: an epidemiological study. Br. J. Haematol. 161, 525–532 (2013).

    PubMed Central Google Scholar

  • Gertz, M. A., Lacy, M. Q., Dispenzieri, A. & Hayman, S. R. Amyloidosis. Best Pract. Res. Clin. Haematol. 18, 709–727 (2005).

    CAS Google Scholar

  • Merlini, G. CyBorD: stellar response rates in AL amyloidosis. Blood 119, 4343–4345 (2012).

    CAS Google Scholar

  • Falk, R. H., Alexander, K. M., Liao, R. & Dorbala, S. AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J. Am. Coll. Cardiol. 68, 1323–1341 (2016).

    Google Scholar

  • Muchtar, E. et al. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood 129, 2111–2119 (2017).

    CAS PubMed Central Google Scholar

  • Jaccard, A. et al. Efficacy of bortezomib, cyclophosphamide and dexamethasone in treatment-naive patients with high-risk cardiac AL amyloidosis (Mayo Clinic stage III). Haematologica 99, 1479–1485 (2014).

    CAS PubMed Central Google Scholar

  • Mirzoyev, S. A. et al. Cardiac amyloid deposition is common in elderly patients with heart failure and preserved ejection fraction [abstract]. Circulation 122 (Suppl. 21), 17926 (2010).

    Google Scholar

  • Cornwell, G. G., Murdoch, W. L., Kyle, R. A., Westermark, P. & Pitkanen, P. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am. J. Med. 75, 618–623 (1983).

    Google Scholar

  • Tanskanen, M. et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann. Med. 40, 232–239 (2008).

    CAS Google Scholar

  • Rapezzi, C. et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat. Rev. Cardiol. 7, 398–408 (2010).

    CAS Google Scholar

  • Connors, L. H., Lim, A., Prokaeva, T., Roskens, V. A. & Costello, C. E. Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 10, 160–184 (2003).

    CAS Google Scholar

  • Merlini, G. & Westermark, P. The systemic amyloidoses: clearer understanding of the molecular mechanisms offers hope for more effective therapies. J. Intern. Med. 255, 159–178 (2004).

    CAS Google Scholar

  • Pinney, J. H. et al. Senile systemic amyloidosis: clinical features at presentation and outcome. J. Am. Heart Assoc. 2, e000098 (2013).

    PubMed Central Google Scholar

  • Connors, L. H. et al. Cardiac amyloidosis in African Americans: comparison of clinical and laboratory features of transthyretin V122I amyloidosis and immunoglobulin light chain amyloidosis. Am. Heart J. 158, 607–614 (2009).

    CAS Google Scholar

  • Buxbaum, J. N. & Ruberg, F. L. Transthyretin V122I (pV142I)* cardiac amyloidosis: an age-dependent autosomal dominant cardiomyopathy too common to be overlooked as a cause of significant heart disease in elderly African Americans. Genet. Med. 19, 733–742 (2017).

    CAS PubMed Central Google Scholar

  • Rapezzi, C. et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 120, 1203–1212 (2009).

    CAS Google Scholar

  • Gillmore, J. D. et al. A new staging system for cardiac transthyretin amyloidosis. Eur. Heart J. 39, 2799–2806 (2018).

    CAS Google Scholar

  • Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS Google Scholar

  • Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018).

    CAS Google Scholar

  • Berk, J. L. et al. Repurposing diflunisal for familial amyloid polyneuropathy a randomized clinical trial. JAMA 310, 2658–2667 (2013).

    CAS PubMed Central Google Scholar

  • Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007–1016 (2018).

    CAS Google Scholar

  • Lane, T. et al. Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis. Circulation 140, 16–26 (2019).

    CAS Google Scholar

  • Martinez-Naharro, A., Hawkins, P. N. & Fontana, M. Cardiac amyloidosis. Clin. Med. 18, s30–s35 (2018).

    Google Scholar

  • Longhi, S. et al. Atrial fibrillation in amyloidotic cardiomyopathy: prevalence, incidence, risk factors and prognostic role. Amyloid 22, 147–155 (2015).

    CAS Google Scholar

  • Mints, Y. Y., Doros, G., Berk, J. L., Connors, L. H. & Ruberg, F. L. Features of atrial fibrillation in wild-type transthyretin cardiac amyloidosis: a systematic review and clinical experience. ESC Heart Fail. 5, 772–779 (2018).

    PubMed Central Google Scholar

  • Martinez-Naharro, A. et al. High prevalence of intracardiac thrombi in cardiac amyloidosis. J. Am. Coll. Cardiol. 73, 1733–1734 (2019).

    Google Scholar

  • Feng, D. et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation 119, 2490–2497 (2009).

    CAS Google Scholar

  • Grogan, M. et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J. Am. Coll. Cardiol. 68, 1014–1020 (2016).

    Google Scholar

  • Comenzo, R. L. et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia 26, 2317–2325 (2012).

    CAS Google Scholar

  • Sperry, B. W. et al. Are classic predictors of voltage valid in cardiac amyloidosis? A contemporary analysis of electrocardiographic findings. Int. J. Cardiol. 214, 477–481 (2016).

    Google Scholar

  • Dubrey, S. W. et al. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM 91, 141–157 (1998).

    CAS Google Scholar

  • Murtagh, B. et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am. J. Cardiol. 95, 535–537 (2005).

    Google Scholar

  • Habib, G. et al. Multimodality imaging in restrictive cardiomyopathies: an EACVI expert consensus document in collaboration with the “Working Group on myocardial and pericardial diseases” of the European Society of Cardiology Endorsed by the Indian Academy of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 18, 1090–1121 (2017).

    Google Scholar

  • Ruberg, F. L., Grogan, M., Hanna, M., Kelly, J. W. & Maurer, M. S. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 2872–2891 (2019).

    CAS PubMed Central Google Scholar

  • Cyrille, N. B., Goldsmith, J., Alvarez, J. & Maurer, M. S. Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis. Am. J. Cardiol. 114, 1089–1093 (2014).

    Google Scholar

  • Dungu, J. et al. The electrocardiographic features associated with cardiac amyloidosis of variant transthyretin isoleucine 122 type in Afro-Caribbean patients. Am. Heart J. 164, 72–79 (2012).

    CAS Google Scholar

  • Fontana, M. et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology 277, 388–397 (2015).

    Google Scholar

  • Martinez-Naharro, A. et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc. Imaging 12, 810–819 (2019).

    Google Scholar

  • Hongo, M. et al. Comparison of electrocardiographic findings in patients with AL (primary) amyloidosis and in familial amyloid polyneuropathy and anginal pain and their relation to histopathologic findings. Am. J. Cardiol. 85, 849–853 (2000).

    CAS Google Scholar

  • Pozo, E. et al. Cardiac magnetic resonance evaluation of left ventricular remodelling distribution in cardiac amyloidosis. Heart 100, 1688–1695 (2014).

    Google Scholar

  • Falk, R. H. Diagnosis and management of the cardiac amyloidoses. Circulation 112, 2047–2060 (2005).

    Google Scholar

  • Gertz, M. A. et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am. J. Hematol. 79, 319–328 (2005).

    Google Scholar

  • Austin, B. A. et al. Comparison of functional status, electrocardiographic, and echocardiographic parameters to mortality in endomyocardial-biopsy proven cardiac amyloidosis. Am. J. Cardiol. 103, 1429–1433 (2009).

    Google Scholar

  • Knight, D. S. et al. Cardiac structural and functional consequences of amyloid deposition by cardiac magnetic resonance and echocardiography and their prognostic roles. JACC Cardiovasc. Imaging 12, 823–833 (2019).

    Google Scholar

  • Tsang, W. & Lang, R. M. Echocardiographic evaluation of cardiac amyloid. Curr. Cardiol. Rep. 12, 272–276 (2010).

    Google Scholar

  • Klein, A. L. et al. Doppler characterization of left ventricular diastolic function in cardiac amyloidosis. J. Am. Coll. Cardiol. 13, 1017–1026 (1989).

    CAS Google Scholar

  • Pagourelias, E. D. et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ. Cardiovasc. Imaging 10, e005588 (2017).

    Google Scholar

  • Pewsner, D. et al. Ruling a diagnosis in or out with “SpPIn” and “SnNOut”: a note of caution. BMJ 329, 209–213 (2004).

    PubMed Central Google Scholar

  • Phelan, D. et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98, 1442–1448 (2012).

    Google Scholar

  • Senapati, A. et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart 102, 748–754 (2016).

    Google Scholar

  • Rapezzi, C. & Fontana, M. Relative left ventricular apical sparing of longitudinal strain in cardiac amyloidosis is it just amyloid infiltration? JACC Cardiovasc. Imaging 12, 1174–1176 (2019).

    Google Scholar

  • Rapezzi, C. & Fontana, M. Relative left ventricular apical sparing of longitudinal strain in cardiac amyloidosis: is it just amyloid infiltration? JACC Cardiovasc. Imaging 12, 1174–1176 (2019).

    Google Scholar

  • Pennell, D. J. Cardiovascular magnetic resonance: twenty-first century solutions in cardiology. Clin. Med. 3, 273–278 (2003).

    Google Scholar

  • Martinez-Naharro, A. et al. Magnetic resonance in transthyretin cardiac amyloidosis. J. Am. Coll. Cardiol. 70, 466–477 (2017).

    CAS Google Scholar

  • White, S. K. et al. T1 mapping for myocardial extracellular volume measurement by CMR bolus only versus primed infusion technique. JACC Cardiovasc. Imaging 6, 955–962 (2013).

    Google Scholar

  • Reiter, T. et al. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14, 31 (2012).

    PubMed Central Google Scholar

  • Koenig, S. H., Spiller, M., Brown, R. D. III & Wolf, G. L. Relaxation of water protons in the intra- and extracellular regions of blood containing Gd(DTPA). Magn. Reson. Med. 3, 791–795 (1986).

    CAS Google Scholar

  • Kim, R. J. et al. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation 100, 185–192 (1999).

    CAS Google Scholar

  • Rehwald, W. G., Fieno, D. S., Chen, E. L., Kim, R. J. & Judd, R. M. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105, 224–229 (2002).

    Google Scholar

  • Maceira, A. M. et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111, 186–193 (2005).

    Google Scholar

  • Fontana, M., Chung, R., Hawkins, P. N. & Moon, J. C. Cardiovascular magnetic resonance for amyloidosis. Heart Fail. Rev. 20, 133–144 (2015).

    CAS Google Scholar

  • Kwong, R. Y. & Falk, R. H. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111, 122–124 (2005).

    Google Scholar

  • Fontana, M. et al. A case report in cardiovascular magnetic resonance: the contrast agent matters in amyloid. BMC Med. Imaging 17, 3 (2017).

    PubMed Central Google Scholar

  • Moon, J. C. et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J. Cardiovasc. Magn. Reson. 15, 92 (2013).

    PubMed Central Google Scholar

  • Kellman, P., Arai, A. E., McVeigh, E. R. & Aletras, A. H. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn. Reson. Med. 47, 372–383 (2002).

    PubMed Central Google Scholar

  • Fontana, M. et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132, 1570–1579 (2015).

    CAS PubMed Central Google Scholar

  • Bollee, G. et al. Presentation and outcome of patients with systemic amyloidosis undergoing dialysis. Clin. J. Am. Soc. Nephrol. 3, 375–381 (2008).

    PubMed Central Google Scholar

  • Lachmann, H. J. & Gillmore, J. D. Renal amyloidosis. Br. J. Hosp. Med. 71, 83–86 (2010).

    Google Scholar

  • Fontana, M. et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc. Imaging 7, 157–165 (2014).

    Google Scholar

  • Karamitsos, T. D. et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc. Imaging 6, 488–497 (2013).

    Google Scholar

  • Sado, D. M. et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ. Cardiovasc. Imaging 6, 392–398 (2013).

    Google Scholar

  • Baggiano, A. et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 13, 69–80 (2020).

    Google Scholar

  • Banypersad, S. M. et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur. Heart J. 36, 244–251 (2015).

    Google Scholar

  • Banypersad, S. M. et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ. Cardiovasc. Imaging 6, 34–39 (2013).

    Google Scholar

  • Martinez-Naharro, A. et al. CMR-verified regression of cardiac AL amyloid after chemotherapy. JACC Cardiovasc. Imaging 11, 152–154 (2018).

    Google Scholar

  • Kotecha, T. et al. Myocardial edema and prognosis in amyloidosis. J. Am. Coll. Cardiol. 71, 2919–2931 (2018).

    Google Scholar

  • Kellman, P. et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J. Cardiovasc. Magn. Reson. 19, 43 (2017).

    PubMed Central Google Scholar

  • Shirahama, T. & Cohen, A. S. High-resolution electron microscopic analysis of the amyloid fibril. J. Cell Biol. 33, 679–708 (1967).

    CAS PubMed Central Google Scholar

  • Nordlinger, M., Magnani, B., Skinner, M. & Falk, R. H. Is elevated plasma B-natriuretic peptide in amyloidosis simply a function of the presence of heart failure? Am. J. Cardiol. 96, 982–984 (2005).

    CAS Google Scholar

  • Martinez-Naharro, A. et al. Routine identification of hypoperfusion in cardiac amyloidosis by myocardial blood flow mapping [abstract 028]. Heart 103 (Suppl. 1), A24 (2017).

    Google Scholar

  • Wizenberg, T. A., Muz, J., Sohn, Y. H., Samlowski, W. & Weissler, A. M. Value of positive myocardial technetium-99m-pyrophosphate scintigraphy in the noninvasive diagnosis of cardiac amyloidosis. Am. Heart J. 103, 468–473 (1982).

    CAS Google Scholar

  • Puille, M. et al. 99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur. J. Nucl. Med. Mol. Imaging 29, 376–379 (2002).

    CAS Google Scholar

  • Bokhari, S., Shahzad, R., Castano, A. & Maurer, M. S. Nuclear imaging modalities for cardiac amyloidosis. J. Nucl. Cardiol. 21, 175–184 (2014).

    PubMed Central Google Scholar

  • Bokhari, S. et al. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ. Cardiovasc. Imaging 6, 195–201 (2013).

    PubMed Central Google Scholar

  • Castano, A. et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 1, 880–889 (2016).

    Google Scholar

  • Perugini, E. et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J. Am. Coll. Cardiol. 46, 1076–1084 (2005).

    Google Scholar

  • Rapezzi, C. et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc. Imaging 4, 659–670 (2011).

    Google Scholar

  • Papantoniou, V. et al. Imaging of cardiac amyloidosis by (99m)Tc-PYP scintigraphy. Hell. J. Nucl. Med. 18, 42–50 (2015).

    Google Scholar

  • Galat, A. et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 22, 210–220 (2015).

    CAS Google Scholar

  • Glaudemans, A. W. et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid 21, 35–44 (2014).

    CAS Google Scholar

  • Rapezzi, C., Gagliardi, C. & Milandri, A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J. Nucl. Cardiol. 26, 1638–1641 (2019).

    Google Scholar

  • Pilebro, B. et al. (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups. J. Med. Sci. 121, 17–24 (2016).

    PubMed Central Google Scholar

  • Stats, M. A. & Stone, J. R. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc. Pathol. 25, 413–417 (2016).

    CAS Google Scholar

  • Falk, R. H., Lee, V. W., Rubinow, A., Hood, W. B. Jr. & Cohen, A. S. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am. J. Cardiol. 51, 826–830 (1983).

    CAS Google Scholar

  • Hutt, D. F. et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur. Heart J. Cardiovasc. Imaging 15, 1289–1298 (2014).

    Google Scholar

  • Gillmore, J. D. et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133, 2404–2412 (2016).

    CAS Google Scholar

  • Vandenberghe, R. et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann. Neurol. 68, 319–329 (2010).

    Google Scholar

  • Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012).

    CAS PubMed Central Google Scholar

  • Dorbala, S. et al. Imaging cardiac amyloidosis: a pilot study using (18)F-florbetapir positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 41, 1652–1662 (2014).

    CAS Google Scholar

  • Osborne, D. R., Acuff, S. N., Stuckey, A. & Wall, J. S. A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-florbetapir. Front. Cardiovasc. Med. 2, 23 (2015).

    PubMed Central Google Scholar

  • Antoni, G. et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J. Nucl. Med. 54, 213–220 (2013).

    CAS Google Scholar

  • Lee, S. P. et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc. Imaging 8, 50–59 (2015).

    Google Scholar

  • Law, W. P., Wang, W. Y., Moore, P. T., Mollee, P. N. & Ng, A. C. Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J. Nucl. Med. 57, 1733–1739 (2016).

    CAS Google Scholar

  • Paulus, W. J. et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur. Heart J. 28, 2539–2550 (2007).

    Google Scholar

  • Komajda, M. & Lam, C. S. Heart failure with preserved ejection fraction: a clinical dilemma. Eur. Heart J. 35, 1022–1032 (2014).

    CAS Google Scholar

  • Gonzalez-Lopez, E. et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 36, 2585–2594 (2015).

    CAS Google Scholar

  • Treibel, T. A. et al. Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ. Cardiovasc. Imaging 9, e005066 (2016).

    Google Scholar

  • Longhi, S. et al. Identification of TTR-related subclinical amyloidosis with 99mTc-DPD scintigraphy. JACC Cardiovasc. Imaging 7, 531–532 (2014).

    Google Scholar

  • Cavalcante, J. L. et al. Cardiac amyloidosis is prevalent in older patients with aortic stenosis and carries worse prognosis. J. Cardiovasc. Magn. Reson. 19, 98 (2017).

    PubMed Central Google Scholar

  • Castano, A. et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Heart J. 38, 2879–2887 (2017).

    PubMed Central Google Scholar

  • Moon, J. C. et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur. Heart J. 24, 2151–2155 (2003).

    Google Scholar

  • Shah, K. B. et al. Transthyretin cardiac amyloidosis in black Americans. Circ. Heart Fail. 9, e002558 (2016).

    CAS PubMed Central Google Scholar

  • Vogelsberg, H. et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J. Am. Coll. Cardiol. 51, 1022–1030 (2008).

    Google Scholar

  • Austin, B. A. et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc. Imaging 2, 1369–1377 (2009).

    Google Scholar

  • Ruberg, F. L. et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am. J. Cardiol. 103, 544–549 (2009).

    Google Scholar

  • Syed, I. S. et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc. Imaging 3, 155–164 (2010).

    Google Scholar

  • Damy, T. et al. Prevalence and clinical phenotype of hereditary transthyretin amyloid cardiomyopathy in patients with increased left ventricular wall thickness. Eur. Heart J. 37, 1826–1834 (2016).

    Google Scholar

  • Sperry, B. W. et al. Tenosynovial and cardiac amyloidosis in patients undergoing carpal tunnel release. J. Am. Coll. Cardiol. 72, 2040–2050 (2018).

    Google Scholar

  • Fosbol, E. L. et al. Association of carpal tunnel syndrome with amyloidosis, heart failure, and adverse cardiovascular outcomes. J. Am. Coll. Cardiol. 74, 15–23 (2019).

    Google Scholar

  • Dispenzieri, A. et al. Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study. Blood 103, 3960–3963 (2004).

    CAS Google Scholar

  • Mohty, D. et al. Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis. Arch. Cardiovasc. Dis. 104, 611–618 (2011).

    Google Scholar

  • Klein, A. L. et al. Prognostic significance of Doppler measures of diastolic function in cardiac amyloidosis. A Doppler echocardiography study. Circulation 83, 808–816 (1991).

    CAS Google Scholar

  • Koyama, J. & Falk, R. H. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc. Imaging 3, 333–342 (2010).

    Google Scholar

  • Siepen, F. A. D. et al. Predictors of survival stratification in patients with wild-type cardiac amyloidosis. Clin. Res. Cardiol. 107, 158–169 (2018).

    Google Scholar

  • Kotecha, T., Martinez-Naharro, A., Gillmore, J. D., Hawkins, P. N. & Fontana, M. Reply: Amyloidosis in the era of mass spectrometry-based proteomics. J. Am. Coll. Cardiol. 72, 1881 (2018).

    Google Scholar

  • Hutt, D. F. et al. Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur. Heart J. Cardiovasc. Imaging 18, 1344–1350 (2017).

    Google Scholar

  • Dispenzieri, A. et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J. Clin. Oncol. 22, 3751–3757 (2004).

    CAS Google Scholar

  • Emdin, M. et al. Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure. Clin. Chem. Lab. Med. 42, 627–636 (2004).

    CAS Google Scholar

  • Clerico, A. & Emdin, M. Diagnostic accuracy and prognostic relevance of the measurement of cardiac natriuretic peptides: a review. Clin. Chem. 50, 33–50 (2004).

    CAS Google Scholar

  • Rysava, R. AL amyloidosis: advances in diagnostics and treatment. Nephrol. Dial. Transplant 34, 1460–1466 (2019).

    Google Scholar

  • Richards, D. B. et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N. Engl. J. Med. 373, 1106–1114 (2015).

    CAS Google Scholar

  • Diagnostic imaging of cardiac amyloidosis (2024)
    Top Articles
    Chimaeron Normal Guide - TotFW / BWD / BoT
    Mastering Outlaw Rogue DPS in Dragonflight 10.2.7: A Comprehensive Guide
    Randolf Spellshine
    Hickory Back Pages
    Haul auf deutsch: Was ist das? Übersetzung, Bedeutung, Erklärung - Bedeutung Online
    Burkes Outlet Credit Card Sign In
    Scooter Tramps And Beer
    Jay Cutler of NFL Biography, Wife, Career Stats, Net Worth & Salary
    Het Musculoskeletal Clinical Translation Framework - FysioLearning
    Void Client Vrchat
    People Helping Others Property
    Suriname vacancies - working in Paramaribo - Teleperformance
    I Feel Pretty (2018) | Rotten Tomatoes
    Flag Mashup Bot
    Chukchansi Webcam
    Hydro Quebec Power Outage Map
    Gt7 Roadster Shop Rampage Engine Swap
    Kitchen Song Singer Violet Crossword
    Violent Night Showtimes Near The Grand 16 - Lafayette
    Pritzker Sdn 2023
    Vanity Fair Muckrack
    Myzynrewards
    Meine Erfahrung mit Textbroker als Autor (inkl. Beispiel zu Verdienst)
    MySDMC SSO: Manatee County’s Digital Educational Access
    craigslist: northern MI jobs, apartments, for sale, services, community, and events
    Violent Night Showtimes Near Santikos Entertainment Mayan Palace
    Craigslist Swm
    Jacksonville Nc Skipthegames
    پنل کاربری سایت همسریابی هلو
    Maurice hat ein echtes Aggressionsproblem
    Thailandcupid
    Peloton Guide Stuck Installing Update
    Daily Journal Obituary Kankakee
    Pervmom Noodle
    Shellys Earth Materials
    Bdo Passion Of Valtarra
    Blairsville Online Yard Sale
    Hd Hub4U Com
    Get Over It Stables
    Raley Scrubs - Midtown
    What Was D-Day Weegy
    Promiseb Discontinued
    Dr Bizzaro Bubble Tea Menu
    Minute Clinic Schedule 360
    United States Map Quiz
    Sound Of Freedom Showtimes Near Wellborne Cinema
    Russia Ukraine war live: Starmer meets Biden at White House but no decision on Ukraine missiles
    Ucla Football 247
    Jesus Calling December 1 2022
    Nurselogic Testing And Remediation Beginner
    Keystyle.hensel Phelps.com/Account/Login
    The Complete History Of The Yahoo Logo - Hatchwise
    Latest Posts
    Article information

    Author: Fr. Dewey Fisher

    Last Updated:

    Views: 5936

    Rating: 4.1 / 5 (42 voted)

    Reviews: 89% of readers found this page helpful

    Author information

    Name: Fr. Dewey Fisher

    Birthday: 1993-03-26

    Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

    Phone: +5938540192553

    Job: Administration Developer

    Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

    Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.