Oxidative Stress: Harms and Benefits for Human Health (2024)

1. Sato H., Shibata H., Shimizu T., Shibata S., Toriumi H., Ebine T. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience. 2013;248:345–358. doi:10.1016/j.neuroscience.2013.06.010. [PubMed] [CrossRef] [Google Scholar]

2. Navarro-Yepes J., Zavala-Flores L., Anandhan A., Wang F., Skotak M., Chandra N. Antioxidant gene therapy against neuronal cell death. Pharmacology & Therapeutics. 2014;142:206–230. doi:10.1016/j.pharmthera.2013.12.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Rajendran P., Nandakumar N., Rengarajan T., Palaniswami R., Gnanadhas E. N., Lakshminarasaiah U. Antioxidants and human diseases. Clinica Chimica Acta. 2014;436:332–347. doi:10.1016/j.cca.2014.06.004. [PubMed] [CrossRef] [Google Scholar]

4. Wu J. Q., Kosten T. R., Zhang X. Y. Free radicals, antioxidant defense system, and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2013;46:200–206. doi:10.1016/j.pnpbp.2013.02.015. [PubMed] [CrossRef] [Google Scholar]

5. Taniyama Y., Griendling K. K. Reactive oxygen species in the vasculature. Hypertension. 2003;42:1075–1081. doi:10.1161/01.HYP.0000100443.09293.4F. [PubMed] [CrossRef] [Google Scholar]

6. Al-Gubory K. H., Garrel C., Faure P., Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reproductive Biomedicine Online. 2012;25:551–560. doi:10.1016/j.rbmo.2012.08.004. [PubMed] [CrossRef] [Google Scholar]

7. Hansen J. M., Go Y. M., Jones D. P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signalling. Annual Review of Pharmacology and Toxicology. 2006;46:215–234. doi:10.1146/annurev.pharmtox.46.120604.141122. [PubMed] [CrossRef] [Google Scholar]

8. Glasauer A., Chandel N. S. Targeting antioxidants for cancer therapy. Biochemical Pharmacology. 2014;92:90–101. doi:10.1016/j.bcp.2014.07.017. [PubMed] [CrossRef] [Google Scholar]

9. Deponte M. Glutathione catalysis and the reaction mechanism of glutathione-dependent enzymes. Biochimica et Biophysica Acta. 1830;2013:3217–3266. doi:10.1016/j.bbagen.2012.09.018. [PubMed] [CrossRef] [Google Scholar]

10. Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine. 4th. Oxford, UK: Clarendon Press; 2007. [PubMed] [Google Scholar]

11. Bahorun T., Soobrattee M. A., Luximon-Ramma V., Aruoma O. I. Free radicals and antioxidants in cardiovascular health and disease. Internet Journal of Medical Update. 2006;1:1–17. [Google Scholar]

12. Kumar S., Pandey A. K. Free radicals: health implications and their mitigation by herbals. British Journal of Medicine and Medical Research. 2015;7:438–457. [Google Scholar]

13. Kumar S., Pandey A. K. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal. 2013;2013:16. doi:10.1155/2013/162750.162750 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Valko M., Izakovic M., Mazur M., Rhodes C. J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry. 2004;266:37–56. [PubMed] [Google Scholar]

15. Valko M., Leibfritz D., Moncola J., Cronin M. D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology. 2007;39:44–84. doi:10.1016/j.biocel.2006.07.001. [PubMed] [CrossRef] [Google Scholar]

16. Droge W. Free radicals in the physiological control of cell function. Physiological Reviews. 2002;82:47–95. doi:10.1152/physrev.00018.2001. [PubMed] [CrossRef] [Google Scholar]

17. Willcox J. K., Ash S. L., Catignani G. L. Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition. 2004;44:275–295. doi:10.1080/10408690490468489. [PubMed] [CrossRef] [Google Scholar]

18. Pacher P., Beckman J. S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews. 2007;87:315–424. doi:10.1152/physrev.00029.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cellular Signalling. 2007;19:1807–1819. doi:10.1016/j.cellsig.2007.04.009. [PubMed] [CrossRef] [Google Scholar]

20. Halliwell B. Biochemistry of oxidative stress. Biochemical Society Transactions. 2007;35:1147–1150. doi:10.1042/BST0351147. [PubMed] [CrossRef] [Google Scholar]

21. Young I., Woodside J. Antioxidants in health and disease. Journal of Clinical Pathology. 2001;54:176–186. [PMC free article] [PubMed] [Google Scholar]

22. Valko M., Rhodes C. J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006;160:1–40. doi:10.1016/j.cbi.2005.12.009. [PubMed] [CrossRef] [Google Scholar]

23. Valko M., Morris H., Cronin M. T. D. Metals, toxicity and oxidative stress. Current Medicinal Chemistry. 2005;12:1161–1208. [PubMed] [Google Scholar]

24. Parthasarathy S., Santanam N., Ramachandran S., Meilhac O. Oxidants and antioxidants in atherogenesis: an appraisal. Journal of Lipid Research. 1999;40:2143–2157. [PubMed] [Google Scholar]

25. Frei B. Reactive Oxygen Species and Antioxidant Vitamins. Oregon State University: Linus Pauling Institute; 1997. http://lpi.oregonstate.edu/f-w97/reactive.html. [Google Scholar]

26. Nishida N., Arizumi T., Takita M., et al. Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Digestive Diseases. 2013;31(5-6):459–466. doi:10.1159/000355245. [PubMed] [CrossRef] [Google Scholar]

27. Yasui M., Kanemaru Y., Kamosh*ta N., Suzuki T., Arakawa T., Honma M. Tracing the fates of site-specifically introduced DNA adducts in the human genome. DNA Repair (Amst) 2014;15:11–20. doi:10.1016/j.dnarep.2014.01.003. [PubMed] [CrossRef] [Google Scholar]

28. Valavanidis A., Vlachogianni T., Fiotakis K., Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health. 2013;10(9):3886–3907. doi:10.3390/ijerph10093886. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Pizzino G., Bitto A., Interdonato M., et al. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy) Redox Biology. 2014;2:686–693. doi:10.1016/j.redox.2014.05.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Chatterjee M., Saluja R., Kanneganti S., Chinta S., Diksh*t M. Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cellular and Molecular Biology. 2007;53:84–93. [PubMed] [Google Scholar]

31. Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care. 2008;31(Supplement 2):S181–S184. doi:10.2337/dc08-s245. [PubMed] [CrossRef] [Google Scholar]

32. Halliwell B. Role of free radicals in neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs & Aging. 2001;18:685–716. [PubMed] [Google Scholar]

33. Singh R. P., Sharad S., Kapur S. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. Journal, Indian Academy of Clinical Medicine. 2004;5:218–225. [Google Scholar]

34. Christen Y. Oxidative stress and Alzheimer disease. The American Journal of Clinical Nutrition. 2000;71:621S–629S. [PubMed] [Google Scholar]

35. Butterfield D. A. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radical Research. 2002;36:1307–1313. [PubMed] [Google Scholar]

36. Caramori G., Papi A. Oxidants and asthma. Thorax. 2004;59:170–173. [PMC free article] [PubMed] [Google Scholar]

37. Guo R. F., Ward P. A. Role of oxidants in lung injury during sepsis. Antioxidants & Redox Signaling. 2007;9:1991–2002. doi:10.1089/ars.2007.1785. [PubMed] [CrossRef] [Google Scholar]

38. Hoshino Y., Mishima M. Antioxidants & redox signaling redox-based therapeutics for lung diseases. Antioxidants & Redox Signaling. 2008;10:701–704. doi:10.1089/ars.2007.1961. [PubMed] [CrossRef] [Google Scholar]

39. MacNee W. Oxidative stress and lung inflammation in airways disease. European Journal of Pharmacology. 2001;429:195–207. [PubMed] [Google Scholar]

40. Walston J., Xue Q., Semba R. D., et al. Serum antioxidants, inflammation, and total mortality in older women. American Journal of Epidemiology. 2006;163:18–26. doi:10.1093/aje/kwj007. [PubMed] [CrossRef] [Google Scholar]

41. Mahajan A., Tandon V. R. Antioxidants and rheumatoid arthritis. Journal of Indian Rheumatology Association. 2004;12:139–142. [Google Scholar]

42. Galle J. Oxidative stress in chronic renal failure. Nephrology, Dialysis, Transplantation. 2001;16:2135–2142. [PubMed] [Google Scholar]

43. Sadeg N., Pham-Huy C., Martin C., Warnet J. M., Claude J. R. Effect of cyclosporin A and its metabolites and analogs on lipid peroxidation in rabbit renal microsomes. Drug and Chemical Toxicology. 1993;16:165–174. doi:10.3109/01480549309031994. [PubMed] [CrossRef] [Google Scholar]

44. Massicot F., Martin C., Dutertre-Catella H., et al. Modulation of energy status and cytotoxicity induced by FK506 and cyclosporin A in a renal epithelial cell line. Archives of Toxicology. 1997;71:529–531. [PubMed] [Google Scholar]

45. Massicot F., Lamouri A., Martin C., et al. Preventive effects of two PAF-antagonists, PMS 536 and PMS 549, on cyclosporin-induced LLC-PK1 oxidative injury. Journal of Lipid Mediators and Cell Signalling. 1997;15:203–214. [PubMed] [Google Scholar]

46. Samuel J. B., Stanley J. A., Princess R. A., Shanthi P., Sebastian M. S. Gestational cadmium exposure-induced ovotoxicity delays puberty through oxidative stress and impaired steroid hormone levels. Journal of Medical Toxicology. 2011;7(3):195–204. doi:10.1007/s13181-011-0143-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Interdonato M., Pizzino G., Bitto A., et al. Cadmium delays puberty onset and testis growth in adolescents. Clinical Endocrinology. 2015;83(3):357–362. doi:10.1111/cen.12704. [PubMed] [CrossRef] [Google Scholar]

48. Mene-Saffrane L., DellaPenna D. Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiology and Biochemistry. 2010;48:301–309. doi:10.1016/j.plaphy.2009.11.004. [PubMed] [CrossRef] [Google Scholar]

49. Sheppard A., Pennington J. A. T., Weihrauch J. L. Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer F. J., editor. Vitamin E in Health and Disease. New York: Marcel Dekker Inc; 1993. pp. 9–31. [Google Scholar]

50. Sundl I., Murkovic M., Bandoniene D., Winklhofer-Roob B. M. Vitamin E content of foods: comparison of results obtained from food composition tables and HPLC analysis. Clinical Nutrition. 2007;26:145–153. doi:10.1016/j.clnu.2006.06.003. [PubMed] [CrossRef] [Google Scholar]

51. Boscoboinik D., Szewczyk A., Hensey C., Azzi A. Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. The Journal of Biological Chemistry. 1991;266:6188–6194. [PubMed] [Google Scholar]

52. Özer N. K., Palozza P., Boscoboinik D., Azzi A. D-Alpha-tocopherol inhibits low density lipoprotein induced proliferation and protein kinase C activity in vascular smooth muscle cells. FEBS Letters. 1993;322:307–310. [PubMed] [Google Scholar]

53. Sirikci Ö., Özer N. K., Azzi A. Dietary cholesterol-induced changes of protein kinase C and the effect of vitamin E in rabbit aortic smooth muscle cells. Atherosclerosis. 1996;126:253–263. [PubMed] [Google Scholar]

54. Özer N. K., Sirikci O., Taha S., San T., Moser U., Azzi A. Effect of vitamin E and probucol on dietary cholesterol-induced atherosclerosis in rabbits. Free Radical Biology & Medicine. 1998;24:226–233. [PubMed] [Google Scholar]

55. Meydani M., Kwan P., Band M., et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr−/− mice, but not when fed Western style diet. Atherosclerosis. 2014;233:196–205. doi:10.1016/j.atherosclerosis.2013.12.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Keaney J. F., Jr., Simon D. I., Freedman J. E. Vitamin E and vascular homeostasis: implications for atherosclerosis. The FASEB Journal. 1999;13:965–975. [PubMed] [Google Scholar]

57. Febbraio M., Podrez E., Smith J., et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. Journal of Clinical Investigation. 2000;105:1049–1056. doi:10.1172/JCI9259. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Ozer N. K., Negis Y., Aytan N., et al. Vitamin E inhibits CD36 scavenger receptor expression in hypercholesterolemic rabbits. Atherosclerosis. 2006;184:15–20. doi:10.1016/j.atherosclerosis.2005.03.050. [PubMed] [CrossRef] [Google Scholar]

59. Ricciarelli R., Zingg J. M., Azzi A. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation. 2000;102:82–87. [PubMed] [Google Scholar]

60. Tang F., Lu M., Zhang S., et al. Vitamin E conditionally inhibits atherosclerosis in ApoE knockout mice by anti-oxidation and regulation of vasculature gene expressions. Lipids. 2014;49:1215–1223. doi:10.1007/s11745-014-3962-z. [PubMed] [CrossRef] [Google Scholar]

61. Catalgol B., Ziaja I., Breusing N., et al. The proteasome is an integral part of solar ultraviolet a radiation-induced gene expression. The Journal of Biological Chemistry. 2009;284:30076–30086. doi:10.1074/jbc.M109.044503. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Hershko A., Ciechanover A. The ubiquitin system. Annual Review of Biochemistry. 1998;67:425–479. doi:10.1146/annurev.biochem.67.1.425. [PubMed] [CrossRef] [Google Scholar]

63. Sozen E., Karademir B., Yazgan B., Bozaykut P., Ozer N. K. Potential role of proteasome on c-Jun related signaling in hypercholesterolemia induced atherosclerosis. Redox Biology. 2014;2:732–738. doi:10.1016/j.redox.2014.02.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Otero P., Bonet B., Herrera E., Rabano A. Development of atherosclerosis in the diabetic BALB/c mice. Prevention with vitamin E administration. Atherosclerosis. 2005;182:259–265. doi:10.1016/j.atherosclerosis.2005.02.024. [PubMed] [CrossRef] [Google Scholar]

65. Huang Z. G., Liang C., Han S. F., Wu Z. G. Vitamin E ameliorates ox-LDL-induced foam cells formation through modulating the activities of oxidative stress-induced NF-kappaB pathway. Molecular and Cellular Biochemistry. 2012;363:11–19. doi:10.1007/s11010-011-1153-2. [PubMed] [CrossRef] [Google Scholar]

66. Gaedicke S., Zhang X., Schmelzer C., et al. Vitamin E dependent microRNA regulation in rat liver. FEBS Letters. 2008;582:3542–3546. doi:10.1016/j.febslet.2008.09.032. [PubMed] [CrossRef] [Google Scholar]

67. Barella L., Muller P. Y., Schlachter M., et al. Identification of hepatic molecular mechanisms of action of alpha-tocopherol using global gene expression profile analysis in rats. Biochimica et Biophysica Acta. 2004;1689:66–74. doi:10.1016/j.bbadis.2004.02.002. [PubMed] [CrossRef] [Google Scholar]

68. Podszun M. C., Grebenstein N., Spruss A., et al. Dietary alpha-tocopherol and atorvastatin reduce high-fat-induced lipid accumulation and down-regulate CD36 protein in the liver of guinea pigs. The Journal of Nutritional Biochemistry. 2014;25:573–579. doi:10.1016/j.jnutbio.2014.01.008. [PubMed] [CrossRef] [Google Scholar]

69. Abdala-Valencia H., Berdnikovs S., Soveg F., Cook-Mills J. M. Alpha-tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. American Journal of Physiology - Lung Cellular and Molecular Physiology. 2014;307:L482–L496. doi:10.1152/ajplung.00132.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Abdala-Valencia H., Soveg F., Cook-Mills J. M. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. American Journal of Physiology - Lung Cellular and Molecular Physiology. 2016;310:L759–L771. doi:10.1152/ajplung.00301.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Cook-Mills J. M., Avila P. C. Vitamin E and D regulation of allergic asthma immunopathogenesis. International Immunopharmacology. 2014;23:364–372. doi:10.1016/j.intimp.2014.08.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Marchese M. E., Kumar R., Colangelo L. A., et al. The vitamin E isoforms alpha-tocopherol and gamma-tocopherol have opposite associations with spirometric parameters: the CARDIA study. Respiratory Research. 2014;15:p. 31. doi:10.1186/1465-9921-15-31. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Cook-Mills J. M. Isoforms of vitamin E differentially regulate PKC alpha and inflammation: a review. Journal of Clinical & Cellular Immunology. 2013;4(137) doi:10.4172/2155-9899.1000137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Cook-Mills J. M., Abdala-Valencia H., Hartert T. Two faces of vitamin e in the lung. American Journal of Respiratory and Critical Care Medicine. 2013;188:279–284. doi:10.1164/rccm.201303-0503ED. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Abdala-Valencia H., Berdnikovs S., Cook-Mills J. M. Vitamin E isoforms differentially regulate intercellular adhesion molecule-1 activation of PKCalpha in human microvascular endothelial cells. PLoS One. 2012;7, article e41054 doi:10.1371/journal.pone.0041054. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. McCary C. A., Abdala-Valencia H., Berdnikovs S., Cook-Mills J. M. Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation: reversibility of alpha-tocopherol and gamma-tocopherol’s effects. Journal of Immunology. 2011;186:3674–3685. doi:10.4049/jimmunol.1003037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Cook-Mills J. M., McCary C. A. Isoforms of vitamin E differentially regulate inflammation. Endocrine, Metabolic & Immune Disorders Drug Targets. 2010;10:348–366. [PMC free article] [PubMed] [Google Scholar]

78. Cook-Mills J. M., Marchese M. E., Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxidants & Redox Signaling. 2011;15:1607–1638. doi:10.1089/ars.2010.3522. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Abdala-Valencia H., Cook-Mills J. M. VCAM-1 signals activate endothelial cell protein kinase Cα via oxidation. Journal of Immunology. 2006;177:6379–6387. [PMC free article] [PubMed] [Google Scholar]

80. Berdnikovs S., Abdala-Valencia H., McCary C., et al. Isoforms of vitamin E have opposing immunoregulatory funcitons during inflammation by regulating leukocyte recruitment. Journal of Immunology. 2009;182:4395–4405. doi:10.4049/jimmunol.0803659. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Cook-Mills J. M., Gebretsadik T., Abdala-Valencia H., et al. Brief research report: interaction of vitamin E isoforms on asthma and allergic airway disease. Thorax. 2016;71:954–956. doi:10.1136/thoraxjnl-2016-208494. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Wu D., Han S. N., Meydani M., Meydani S. N. Effect of concomitant consumption of fish oil and vitamin E on T cell mediated function in the elderly: a randomized double-blind trial. Journal of the American College of Nutrition. 2006;25:300–306. [PubMed] [Google Scholar]

83. Christiani D. C., Ye T. T., Wegman D. H., Eisen E. A., Dai H. L., Lu P. L. Pulmonary function among cotton textile workers. A study of variability in symptom reporting, across-shift drop in FEV1, and longitudinal change. Chest. 1994;105:1713–1721. [PubMed] [Google Scholar]

84. Jacobs R. R., Boehlecke B., van Hage-Hamsten M., Rylander R. Bronchial reactivity, atopy, and airway response to cotton dust. The American Review of Respiratory Disease. 1993;148:19–24. doi:10.1164/ajrccm/148.1.19. [PubMed] [CrossRef] [Google Scholar]

85. Delfino R. J., Quintana P. J., Floro J., et al. Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environmental Health Perspectives. 2004;112:932–941. [PMC free article] [PubMed] [Google Scholar]

86. Koskela H., Tukiainen H., Kononoff A., Pekkarinen H. Effect of whole-body exposure to cold and wind on lung function in asthmatic patients. Chest. 1994;105:1728–1731. [PubMed] [Google Scholar]

87. Blanc P. D., Eisner M. D., Katz P. P., et al. Impact of the home indoor environment on adult asthma and rhinitis. Journal of Occupational and Environmental Medicine. 2005;47:362–372. [PubMed] [Google Scholar]

88. Fedulov A. V., Kobzik L. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. American Journal of Respiratory Cell and Molecular Biology. 2011;44:285–292. doi:10.1165/rcmb.2009-0400OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Lim R. H., Kobzik L. Maternal transmission of asthma risk. American Journal of Reproductive Immunology. 2009;61:1–10. doi:10.1111/j.1600-0897.2008.00671.x. [PubMed] [CrossRef] [Google Scholar]

90. Langlet C., Springael C., Johnson J., et al. PKC-alpha controls MYD88-dependent TLR/IL-1R signaling and cytokine production in mouse and human dendritic cells. European Journal of Immunology. 2010;40:505–515. doi:10.1002/eji.200939391. [PubMed] [CrossRef] [Google Scholar]

91. Cejas P. J., Carlson L. M., Zhang J., et al. Protein kinase C betaII plays an essential role in dendritic cell differentiation and autoregulates its own expression. The Journal of Biological Chemistry. 2005;280:28412–28423. doi:10.1074/jbc.M500345200. [PubMed] [CrossRef] [Google Scholar]

92. Lin Y. F., Lee H. M., Leu S. J., Tsai Y. H. The essentiality of PKCalpha and PKCbetaI translocation for CD14+monocyte differentiation towards macrophages and dendritic cells, respectively. Journal of Cellular Biochemistry. 2007;102:429–441. doi:10.1002/jcb.21305. [PubMed] [CrossRef] [Google Scholar]

93. Lin Y. F., Leu S. J., Huang H. M., Tsai Y. H. Selective activation of specific PKC isoforms dictating the fate of CD14(+) monocytes towards differentiation or apoptosis. Journal of Cellular Physiology. 2011;226:122–131. doi:10.1002/jcp.22312. [PubMed] [CrossRef] [Google Scholar]

94. Asehnoune K., Strassheim D., Mitra S., Yeol Kim J., Abraham E. Involvement of PKCalpha/beta in TLR4 and TLR2 dependent activation of NF-kappaB. Cellular Signalling. 2005;17:385–394. doi:10.1016/j.cellsig.2004.08.005. [PubMed] [CrossRef] [Google Scholar]

95. Ramadan G., Schmidt R. E., Schubert J. In vitro generation of human CD86+ dendritic cells from CD34+ haematopoietic progenitors by PMA and in serum-free medium. Clinical and Experimental Immunology. 2001;125:237–244. [PMC free article] [PubMed] [Google Scholar]

96. Davis T. A., Saini A. A., Blair P. J., et al. Phorbol esters induce differentiation of human CD34+ hemopoietic progenitors to dendritic cells: evidence for protein kinase C-mediated signaling. Journal of Immunology. 1998;160:3689–3697. [PubMed] [Google Scholar]

97. Rajotte D., Haddad P., Haman A., Cragoe E. J., Jr., Hoang T. Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3. The Journal of Biological Chemistry. 1992;267:9980–9987. [PubMed] [Google Scholar]

98. Salh B., Hoeflick K., Kwan W., Pelech S. Granulocyte-macrophage colony-stimulating factor and interleukin-3 potentiate interferon-gamma-mediated endothelin production by human monocytes: role of protein kinase C. Immunology. 1998;95:473–479. [PMC free article] [PubMed] [Google Scholar]

99. St Louis D. C., Woodco*ck J. B., Franzoso G., et al. Evidence for distinct intracellular signaling pathways in CD34+ progenitor to dendritic cell differentiation from a human cell line model. Journal of Immunology. 1999;162:3237–3248. [PubMed] [Google Scholar]

100. Cejas P. J., Carlson L. M., Kolonias D., et al. Regulation of RelB expression during the initiation of dendritic cell differentiation. Molecular and Cellular Biology. 2005;25:7900–7916. doi:10.1128/MCB.25.17.7900-7916.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Farren M. R., Carlson L. M., Lee K. P. Tumor-mediated inhibition of dendritic cell differentiation is mediated by down regulation of protein kinase C beta II expression. Immunologic Research. 2010;46:165–176. doi:10.1007/s12026-009-8118-5. [PubMed] [CrossRef] [Google Scholar]

102. Geijsen N., Spaargaren M., Raaijmakers J. A., Lammers J. W., Koenderman L., Coffer P. J. Association of RACK1 and PKCbeta with the common beta-chain of the IL-5/IL-3/GM-CSF receptor. Oncogene. 1999;18:5126–5130. doi:10.1038/sj.onc.1202896. [PubMed] [CrossRef] [Google Scholar]

103. Verdelli D., Nobili L., Todoerti K., et al. Molecular targeting of the PKC-beta inhibitor enzastaurin (LY317615) in multiple myeloma involves a coordinated downregulation of MYC and IRF4 expression. Hematological Oncology. 2009;27:23–30. doi:10.1002/hon.875. [PubMed] [CrossRef] [Google Scholar]

104. Hamdorf M., Berger A., Schule S., Reinhardt J., Flory E. PKCdelta-induced PU.1 phosphorylation promotes hematopoietic stem cell differentiation to dendritic cells. Stem Cells. 2011;29:297–306. doi:10.1002/stem.564. [PubMed] [CrossRef] [Google Scholar]

105. Lee J. S., Kim I. S., Ryu J. S., Yun C. Y. House dust mite, Dermatophagoides pteronissinus increases expression of MCP-1, IL-6, and IL-8 in human monocytic THP-1 cells. Cytokine. 2008;42:365–371. doi:10.1016/j.cyto.2008.03.010. [PubMed] [CrossRef] [Google Scholar]

106. Guler R., Afshar M., Arendse B., et al. PKCdelta regulates IL-12p40/p70 production by macrophages and dendritic cells, driving a type 1 healer phenotype in cutaneous leishmaniasis. European Journal of Immunology. 2011;41:706–715. doi:10.1002/eji.201040985. [PubMed] [CrossRef] [Google Scholar]

107. McCary C. A., Yoon Y., Panagabko C., Cho W., Atkinson J., Cook-Mills J. M. Vitamin E isoforms directly bind PKCalpha and differentially regulate activation of PKCalpha. The Biochemical Journal. 2012;441:189–198. doi:10.1042/BJ20111318. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Mahom*oodally M. F., Gurib-Fakim A., Subratty A. H. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharmaceutical Biology. 2005;43(3):237–242. [Google Scholar]

109. Pandey A. K. Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parihenium histerophorus: an in vitro study. National Academy Science Letters. 2007;30(11-12):383–386. [Google Scholar]

110. Heim K. E., Tagliaferro A. R., Bobilya D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry. 2002;13(10):572–584. [PubMed] [Google Scholar]

111. Kumar S., Mishra A., Pandey A. K. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complementary and Alternative Medicine. 2013;13, article 120 doi:10.1186/1472-6882-13-120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Kumar S., Pandey A. K. Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. Vegetos-An International Journal of Plant Research. 2013;26:301–307. doi:10.5958/j.2229-4473.26.1.043. [CrossRef] [Google Scholar]

113. Leopoldini M., Russo N., Chiodo S., Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. Journal of Agricultural and Food Chemistry. 2006;54(17):6343–6351. doi:10.1021/jf060986h. [PubMed] [CrossRef] [Google Scholar]

114. Kumar S., Gupta A., Pandey A. K. Calotropis procera root extract has capability to combat free radical mediated damage. ISRN Pharmacology. 2013;2013:8. doi:10.1155/2013/691372.691372 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Cook N. C., Samman S. Review: flavonoids-chemistry, metabolism, cardioprotective effects and dietary sources. Journal of Nutritional Biochemistry. 1996;7(2):66–76. [Google Scholar]

116. Rice-Evans C. A., Miller N. J., Bolwell P. G., Broamley P. M., Pridham J. B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research. 1995;22(4):375–383. [PubMed] [Google Scholar]

117. Pandey A. K., Mishra A. K., Mishra A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cellular and Molecular Biology. 2012;58:142–147. [PubMed] [Google Scholar]

118. Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine. Oxford, UK: Oxford University Press; 1998. [Google Scholar]

119. Mishra A., Kumar S., Pandey A. K. Scientific validation of the medicinal efficacy of Tinospora cordifolia. The Scientific World Journal. 2013;2013:8. doi:10.1155/2013/292934.292934 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Ganai A. A., Khan A. A., Malik Z. A., Farooqi H. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating d-galactosamine induced fulminant hepatic failure in Wistar rats. Toxicology and Applied Pharmacology. 2015;283:139–146. doi:10.1016/j.taap.2015.01.012. [PubMed] [CrossRef] [Google Scholar]

121. Clarkson T. B., Anthony M. S., Morgan T. M. Inhibition of postmenopausal atherosclerosis progression: a comparison of the effects of conjugated equine estrogens and soy phytoestrogens. The Journal of Clinical Endocrinology and Metabolism. 2001;86:41–47. doi:10.1210/jcem.86.1.7151. [PubMed] [CrossRef] [Google Scholar]

122. Adams M. R., Golden D. L., Williams J. K., Franke A. A., Register T. C., Kaplan J. R. Soy protein containing isoflavones reduces the size of atherosclerotic plaques without affecting coronary artery reactivity in adult male monkeys. The Journal of Nutrition. 2005;135:2852–2856. [PubMed] [Google Scholar]

123. Yamakoshi J., Piskula M. K., Izumi T., et al. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. The Journal of Nutrition. 2000;130:1887–1893. [PubMed] [Google Scholar]

124. Kanazawa T., Osanai T., Zhang X. S., et al. Protective effects of soy protein on the peroxidizability of lipoproteins in cerebrovascular diseases. The Journal of Nutrition. 1995;125:639S–646S. [PubMed] [Google Scholar]

125. Tikkanen M. J., Wahala K., Ojala S., Vihma V., Adlercreutz H. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:3106–3110. [PMC free article] [PubMed] [Google Scholar]

126. Wiseman H., O’Reilly J. D., Adlercreutz H., et al. Isoflavone phytoestrogens consumed in soy decrease F(2)-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans. The American Journal of Clinical Nutrition. 2000;72:395–400. [PubMed] [Google Scholar]

127. Ryan-Borchers T. A., Park J. S., Chew B. P., McGuire M. K., Fournier L. R., Beerman K. A. Soy isoflavones modulate immune function in healthy postmenopausal women. The American Journal of Clinical Nutrition. 2006;83:1118–1125. [PubMed] [Google Scholar]

128. Hodgson J. M., Puddey I. B., Croft K. D., Mori T. A., Rivera J., Beilin L. J. Isoflavonoids do not inhibit in vivo lipid peroxidation in subjects with high-normal blood pressure. Atherosclerosis. 1999;145:167–172. [PubMed] [Google Scholar]

129. Samman S., Lyons Wall P. M., Chan G. S., Smith S. J., Petocz P. The effect of supplementation with isoflavones on plasma lipids and oxidisability of low density lipoprotein in premenopausal women. Atherosclerosis. 1999;147:277–283. [PubMed] [Google Scholar]

130. Vega-Lopez S., Yeum K. J., Lecker J. L., et al. Plasma antioxidant capacity in response to diets high in soy or animal protein with or without isoflavones. The American Journal of Clinical Nutrition. 2005;81:43–49. [PubMed] [Google Scholar]

131. Choi C., Cho H., Park J., Cho C., Song Y. Suppressive effects of genistein on oxidative stress and NFkappaB activation in RAW 264.7 macrophages. Bioscience, Biotechnology, and Biochemistry. 2003;67:1916–1922. doi:10.1271/bbb.67.1916. [PubMed] [CrossRef] [Google Scholar]

132. Naidu K. A. Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal. 2003;2:p. 7. doi:10.1186/1475-2891-2-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Crott J. W., Fenech M. Effect of vitamin C supplementation on chromosome damage, apoptosis and necrosis ex vivo. Carcinogenesis. 1999;20(6):1035–1041. [PubMed] [Google Scholar]

134. Carr A. C., Frei B. Does vitamin C act as pro-oxidant under physiological conditions? FASEB Journal. 1999;13:1007–1024. [PubMed] [Google Scholar]

135. Suzuki K., Koike H., Matsui H., et al. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. International Journal of Cancer. 2002;99:846–852. doi:10.1002/ijc.10428. [PubMed] [CrossRef] [Google Scholar]

136. Raschke M., Rowland I. R., Magee P. J., Pool-Zobel B. L. Genistein protects prostate cells against hydrogen peroxide-induced DNA damage and induces expression of genes involved in the defence against oxidative stress. Carcinogenesis. 2006;27:2322–2330. doi:10.1093/carcin/bgl082. [PubMed] [CrossRef] [Google Scholar]

137. Takada Y., Mukhopadhyay A., Kundu G. C., Mahabeleshwar G. H., Singh S., Aggarwal B. B. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein tyrosine kinase. Journal of Biological Chemistry. 2003;278(26):24233–24241. doi:10.1074/jbc.M212389200. [PubMed] [CrossRef] [Google Scholar]

138. Harakeh S., Diab-Assaf M., Khalife J. C., et al. Ascorbic acid induces apoptosis in adult T-cell leukemia. Anticancer Research. 2007;27(1A):289–298. [PubMed] [Google Scholar]

139. Nakano H., Nakajima A., Sakon-Komazawa S., Piao J. H., Xue X., Okumura K. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death and Differentiation. 2006;13(5):730–777. doi:10.1038/sj.cdd.4401830. [PubMed] [CrossRef] [Google Scholar]

140. Belin S., Kaya F., Duisit G., Giacometti S., Ciccolini J., Fontés M. Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2) doi:10.1371/journal.pone.0004409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Migliozzi J. A. Effect of ascorbic acid on tumour growth. British Journal of Cancer. 1977;35:p. 448. [PMC free article] [PubMed] [Google Scholar]

142. Kishino K., Hashimoto K., Amano O., Kochi M., Liu W., Sakagami H. Tumor-specific cytotoxicity and type of cell death induced by sodium 5,6-benzylidene-l-ascorbate. Anticancer Research. 2008;28:2577–2584. [PubMed] [Google Scholar]

143. Chen Q., Espey M. G., Sun A. Y., et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Science. 2008;105(32):11105–11109. doi:10.1073/pnas.0804226105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Chen Q., Espey M. G., Sun A. Y., et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proceedings of the National Academy of Science. 2007;104(21):8749–8754. doi:10.1073/pnas.0702854104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Richardson D. R., Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochimica et Biophysica Acta. 1997;1331(1):1–40. [PubMed] [Google Scholar]

146. Hann H. W., Evans A. E., Siegel S. E., et al. Prognostic importance of serum ferritin in patients with stages III and IV neuroblastoma: the Children’s Cancer Study Group experience. Cancer Research. 1985;45(6):2843–2848. [PubMed] [Google Scholar]

147. Shen L., Zhao H. Y., Du J., Wang F. Anti-tumor activities of four chelating agents against human neuroblastoma cells. In Vivo. 2005;19(1):233–236. [PubMed] [Google Scholar]

148. Chen Q., Espey M. G., Krishna M. C., et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proceedings of the National Academy of Science. 2005;102(38):13604–13609. doi:10.1073/pnas.0506390102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Bhat S. H., Azmi A. S., Hanif S., Hadi S. M. Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. International Journal of Biochemistry and Cell Biology. 2006;38:2074–2081. doi:10.1016/j.biocel.2006.05.017. [PubMed] [CrossRef] [Google Scholar]

150. Kinosh*ta N., Yamamura T., Teranuma H., et al. Interaction between dental metals and antioxidants assessed by cytotoxicity assay and ESR spectroscopy. Anticancer Research. 2002;22:4017–4022. [PubMed] [Google Scholar]

151. Sakagami H., Arakawa H., Haeda M., et al. Production of hydrogen peroxide and methionine sulfoxide by epigallactocatechin gallate and antioxidants. Anticancer Research. 2001;21:2633–2642. [PubMed] [Google Scholar]

152. Vojdani A., Bazargan M., Vojdani E., Wright J. New evidence for antioxidant properties of vitamin C. Cancer Detection and Prevention. 2000;24(6):508–523. [PubMed] [Google Scholar]

153. Kelley E. E., Domann F. E., Buettner G. R., Oberley L. W., Patrick Burns C. Increased efficiency of in vitro Photofrin photosensitization of human oral squamous cell carcinoma by iron and ascorbate. Journal of Photochemistry and Photobiology B: Biology. 1997;40:273–277. [PubMed] [Google Scholar]

154. Noto V., Taper H. S., Jiang Y.-H., Janssens J., Bonte J., De Loecker W. Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. 1. Synergism of combined vitamin C and K3 action. Cancer. 1989;63:901–906. [PubMed] [Google Scholar]

155. Leveille C. R., Schwartz E. R. Effect of ascorbate on lysosomal enzyme activities in guinea pig cartilage and adrenals. International Journal for Vitamin and Nutrition Research. 1982;52:436–441. [PubMed] [Google Scholar]

156. Harada T., Enomoto A., Kitazawa T., Maita K., Shirasu Y. Oral leukoplakia and costochondral hyperplasia induced by diethylnitrosamine in hamsters exposed to cigarette smoke with or without dietary vitamin C. Veterinary Pathology. 1987;24:p. 257. doi:10.1177/030098588702400310. [PubMed] [CrossRef] [Google Scholar]

157. Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. doi:10.1016/j.fitote.2011.01.018. [PubMed] [CrossRef] [Google Scholar]

158. Park E. J., Pezzuto J. M. Flavonoids in cancer prevention. Anti-Cancer Agents in Medicinal Chemistry. 2012;12:836–851. [PubMed] [Google Scholar]

159. Hodnick W. F., Milosavljevic E. B., Nelson J. H., Pardini R. S. Electrochemistry of flavonoids. Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochemical Pharmacology. 1988;37:2607–2611. [PubMed] [Google Scholar]

160. Choi S. I., Jeong C. S., Cho S. Y., Lee Y. S. Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase. Archives of Pharmacal Research. 2007;30:1328–1335. [PubMed] [Google Scholar]

161. Lee Y. S. Role of NADPH oxidase-mediated generation of reactive oxygen species in the mechanism of apoptosis induced by phenolic acids in HepG2 human hepatoma cells. Archives of Pharmacal Research. 2005;28:1183–1189. [PubMed] [Google Scholar]

162. Alhosin M., Leon-Gonzalez A. J., Dandache I., et al. Bilberry extract (Antho 50) selectively induces redox-sensitive caspase 3-related apoptosis in chronic lymphocytic leukemia cells by targeting the Bcl-2/Bad pathway. Scientific Reports. 2015;5:p. 8996. doi:10.1038/srep08996. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Kim J. H., Auger C., Kurita I., et al. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase. Nitric Oxide: Biology and Chemistry. 2013;35:54–64. doi:10.1016/j.niox.2013.08.002. [PubMed] [CrossRef] [Google Scholar]

164. Sharif T., Stambouli M., Burrus B., et al. The polyphenolic-rich Aronia melanocarpa juice kills teratocarcinomal cancer stern-like cells, but not their differentiated counterparts. Journal of Functional Foods. 2013;5:1244–1252. [Google Scholar]

165. Wang J., Lu M. L., Dai H. L., Zhang S. P., Wang H. X., Wei N. Esculetin, a coumarin derivative, exerts in vitro and in vivo antiproliferative activity against hepatoular carcinoma by initiating a mitochondrial-dependent apoptosis pathway. Brazilian Journal of Medical and Biological Research. 2015;48:245–253. doi:10.1590/1414-431X20144074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Yang J., Xiao Y. L., He X. R., Qiu G. F., Hu X. M. Aesculetin-induced apoptosis through a ROS-mediated mitochondrial dysfunction pathway in human cervical cancer cells. Journal of Asian Natural Products Research. 2010;12:185–193. doi:10.1080/10286020903427336. [PubMed] [CrossRef] [Google Scholar]

167. Liang T., Zhang X., Xue W., Zhao S., Zhang X., Pei J. Curcumin induced human gastric cancer BGC-823 s apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway. International Journal of Molecular Sciences. 2014;15:15754–15765. doi:10.3390/ijms150915754. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Lambert J. D., Elias R. J. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Archives of Biochemistry and Biophysics. 2010;501:65–72. doi:10.1016/j.abb.2010.06.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Hwang J. T., Ha J., Park I. J., et al. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Letters. 2007;247:115–121. doi:10.1016/j.canlet.2006.03.030. [PubMed] [CrossRef] [Google Scholar]

170. Oikawa S., Furukawaa A., Asada H., Hirakawa K., Kawanishi S. Catechins induce oxidative damage to ular and isolated DNA through the generation of reactive oxygen species. Free Radical Research. 2003;37:881–890. [PubMed] [Google Scholar]

171. Palit S., Kar S., Sharma G., Das P. K. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. Journal of Cellular Physiology. 2015;230:1729–1739. doi:10.1002/jcp.24818. [PubMed] [CrossRef] [Google Scholar]

172. Zhang Q., Cheng G., Qiu H., et al. The p53-inducible gene 3 involved in flavonoid-induced cytotoxicity through the reactive oxygen species-mediated mitochondrial apoptotic pathway in human hepatoma cells. Food & Function. 2015;6:1518–1525. doi:10.1039/c5fo00142k. [PubMed] [CrossRef] [Google Scholar]

173. Kim G. T., Lee S. H., Kim Y. M. Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 Colon cancer cells. Journal of Cancer Prevention. 2013;18:264–270. [PMC free article] [PubMed] [Google Scholar]

174. Iwasaki M., Inoue M., Otani T., et al. Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan Public Health Center-based prospective study group. Journal of Clinical Oncology. 2008;26:1677–1683. doi:10.1200/JCO.2007.13.9964. [PubMed] [CrossRef] [Google Scholar]

175. Jin S., Zhang Q. Y., Kang X. M., Wang J. X., Zhao W. H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Annals of Oncology. 2010;21:263–268. doi:10.1093/annonc/mdp499. [PubMed] [CrossRef] [Google Scholar]

176. Lo Y.-L., Wang W., Ho C. T. 7,3′,4′-Trihydroxyisoflavone modulates multidrug resistance transporters and induces apoptosis via production of reactive oxygen species. Toxicology. 2012;302:221–232. doi:10.1016/j.tox.2012.08.003. [PubMed] [CrossRef] [Google Scholar]

177. Yang X. J., Belosay A., Hartman J. A., et al. Dietary soy isoflavones increase metastasis to lungs in an experimental model of breast cancer with bone micro-tumors. Clinical & Experimental Metastasis. 2015;32:323–333. doi:10.1007/s10585-015-9709-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Raksh*t S., Mandal L., Pal B. C., et al. Involvement of ROS in chlorogenic acid-induced apoptosis of Bcr-Abl+ CML cells. Biochemical Pharmacology. 2010;80:1662–1675. doi:10.1016/j.bcp.2010.08.013. [PubMed] [CrossRef] [Google Scholar]

179. Kim K. K., Singh A. P., Singh R. K., et al. Anti-angiogenic activity of cranberry proanthocyanidins and cytotoxic properties in ovarian cancer cells. International Journal of Oncology. 2012;40:227–235. doi:10.3892/ijo.2011.1198. [PubMed] [CrossRef] [Google Scholar]

180. Luo C., Li Y., Wang H., et al. Hydroxytyrosol promotes superoxide production and defects in autophagy leading to anti-proliferation and apoptosis on human prostate cancer cells. Current Cancer Drug Targets. 2013;13:625–639. [PubMed] [Google Scholar]

181. Sun L. J., Luo C., Liu J. K. Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation. Food & Function. 2014;5:1909–1914. doi:10.1039/c4fo00187g. [PubMed] [CrossRef] [Google Scholar]

182. Guha P., Dey A., Sen R., Chatterjee M., Chattopadhyay S., Bandyopadhyay S. K. Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. The Journal of Pharmacology and Experimental Therapeutics. 2011;336:206–214. doi:10.1124/jpet.110.171983. [PubMed] [CrossRef] [Google Scholar]

183. Alhosin M., Sharif T., Mousli M., et al. Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. Journal of Experimental & Clinical Cancer Research. 2011;30 doi:10.1186/1756-9966-30-41. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Achour M., Mousli M., Alhosin M., et al. Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Biochemical and Biophysical Research Communications. 2013;430:208–212. doi:10.1016/j.bbrc.2012.11.087. [PubMed] [CrossRef] [Google Scholar]

185. Kang J., Chen J., Shi Y., Jia J., Zhang Y. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochemical Pharmacology. 2005;69:1205–1213. doi:10.1016/j.bcp.2005.01.014. [PubMed] [CrossRef] [Google Scholar]

186. Rajendran P., Ho E., Williams D. E., Dashwood R. H. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clinical Epigenetics. 2011;3:p. 4. doi:10.1186/1868-7083-3-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Remely M., Lovrecic L., de la Garza A. L., et al. Therapeutic perspectives of epigenetically active nutrients. British Journal of Pharmacology. 2015;172:2756–2768. doi:10.1111/bph.12854. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Vanden Berghe W. Epigenetic impact of dietary polyphenols in chemoprevention: lifelong remodeling of our epigenomes. Pharmacological Research. 2012;65:565–576. doi:10.1016/j.phrs.2012.03.007. [PubMed] [CrossRef] [Google Scholar]

189. Malireddy S., Kotha S. R., Secor J. D., et al. Phytochemical antioxidants modulate mammalian ular epigenome: implications in health and disease. Antioxidants & Redox Signaling. 2012;17:327–339. doi:10.1089/ars.2012.4600. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Ong T. P., Moreno F. S., Ross S. A. Targeting the epigenome with bioactive food components for cancer prevention. Journal of Nutrigenetics and Nutrigenomics. 2011;4:275–292. doi:10.1159/000334585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Nakazato T., Ito K., Miyakawa Y., et al. Catechin, a green tea component, rapidly induces apoptosis of myeloid leukemic cells via modulation of reactive oxygen species production in vitro and inhibits tumor growth in vivo. Haematologica. 2005;90:317–325. [PubMed] [Google Scholar]

192. Jeong J. C., Jang S. W., Kim T. H., Kwon C. H., Kim Y. K. Mulberry fruit (Moris fructus) extracts induce human glioma cell death in vitro through ROS-dependent mitochondrial pathway and inhibits glioma tumor growth in vivo. Nutrition and Cancer. 2010;62:402–412. doi:10.1080/01635580903441287. [PubMed] [CrossRef] [Google Scholar]

193. Dent P., Yacoub A., Contessa J., et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiation Research. 2003;159(3):283–300. [PubMed] [Google Scholar]

194. Mladenov E., Magin S., Soni A., Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Seminars in Cancer Biology. 2016;37-38:51–64. doi:10.1016/j.semcancer.2016.03.003. [PubMed] [CrossRef] [Google Scholar]

195. Roos W. P., Thomas A. D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nature Reviews Cancer. 2016;16(1):20–33. doi:10.1038/nrc.2015.2. [PubMed] [CrossRef] [Google Scholar]

196. Ward J. F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Progress in Nucleic Acid Research and Molecular Biology. 1988;35:95–125. [PubMed] [Google Scholar]

197. O’Driscoll M., Jeggo P. A. The role of double-strand break repair—insights from human genetics. Nature Reviews Genetics. 2006;7(1):45–54. doi:10.1038/nrg1746. [PubMed] [CrossRef] [Google Scholar]

198. Jackson S. P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–1078. doi:10.1038/nature08467. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Tubiana M. The role of local treatment in the cure of cancer. European Journal of Cancer. 1992;28A:2061–2069. [PubMed] [Google Scholar]

Oxidative Stress: Harms and Benefits for Human Health (2024)
Top Articles
Massachusetts US Attorney Rachael Rollins to resign after Justice Department watchdog probe
Rachael Rollins Formally Resigns as US Attorney in Wake of Ethics Probes
Craigslist San Francisco Bay
Victor Spizzirri Linkedin
Tyler Sis 360 Louisiana Mo
Roblox Character Added
Bme Flowchart Psu
123Moviescloud
Slag bij Plataeae tussen de Grieken en de Perzen
Nier Automata Chapter Select Unlock
Evil Dead Rise Showtimes Near Regal Columbiana Grande
Samsung Galaxy S24 Ultra Negru dual-sim, 256 GB, 12 GB RAM - Telefon mobil la pret avantajos - Abonament - In rate | Digi Romania S.A.
Alexandria Van Starrenburg
Ostateillustrated Com Message Boards
Cyndaquil Gen 4 Learnset
Honda cb750 cbx z1 Kawasaki kz900 h2 kz 900 Harley Davidson BMW Indian - wanted - by dealer - sale - craigslist
Libinick
Heart and Vascular Clinic in Monticello - North Memorial Health
Team C Lakewood
Lakewood Campground Golf Cart Rental
kvoa.com | News 4 Tucson
How To Tighten Lug Nuts Properly (Torque Specs) | TireGrades
Mandy Rose - WWE News, Rumors, & Updates
D2L Brightspace Clc
Regina Perrow
Cinema | Düsseldorfer Filmkunstkinos
Where to eat: the 50 best restaurants in Freiburg im Breisgau
Housing Intranet Unt
Page 2383 – Christianity Today
In Branch Chase Atm Near Me
Log in or sign up to view
Cdcs Rochester
Sam's Club Gas Prices Deptford Nj
Entry of the Globbots - 20th Century Electro​-​Synthesis, Avant Garde & Experimental Music 02;31,​07 - Volume II, by Various
Registrar Lls
2023 Fantasy Football Draft Guide: Rankings, cheat sheets and analysis
Owa Hilton Email
Courtney Roberson Rob Dyrdek
Sarahbustani Boobs
Fairbanks Auto Repair - University Chevron
Citizens Bank Park - Clio
Victoria Vesce Playboy
Menu Forest Lake – The Grillium Restaurant
Samsung 9C8
Sherwin Source Intranet
Ratchet And Clank Tools Of Destruction Rpcs3 Freeze
Premiumbukkake Tour
Pronósticos Gulfstream Park Nicoletti
Evil Dead Rise - Everything You Need To Know
Roller Znen ZN50QT-E
Runelite Ground Markers
Who We Are at Curt Landry Ministries
Latest Posts
Article information

Author: Margart Wisoky

Last Updated:

Views: 5822

Rating: 4.8 / 5 (58 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Margart Wisoky

Birthday: 1993-05-13

Address: 2113 Abernathy Knoll, New Tamerafurt, CT 66893-2169

Phone: +25815234346805

Job: Central Developer

Hobby: Machining, Pottery, Rafting, Cosplaying, Jogging, Taekwondo, Scouting

Introduction: My name is Margart Wisoky, I am a gorgeous, shiny, successful, beautiful, adventurous, excited, pleasant person who loves writing and wants to share my knowledge and understanding with you.