Summary of Convergence Tests (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    17116
  • This page is a draft and is under active development.

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Series or Test Conclusions Comments

    Divergence Test

    For any series \( \sum^∞_{n=1}a_n\), evaluate \( \lim_{n→∞}a_n\).

    If \( \lim_{n→∞}a_n=0\), the test is inconclusive. This test cannot prove convergence of a series.
    If \( \lim_{n→∞}a_n≠0\), the series diverges.
    Geometric Series \(\sum^∞_{n=1}ar^{n−1}\) If \( |r|<1\), the series converges to \( a/(1−r)\). Any geometric series can be reindexed to be written in the form \( a+ar+ar^2+⋯\), where \( a\) is the initial term and r is the ratio.
    If \( |r|≥1,\) the series diverges.

    p-Series

    \( \sum^∞_{n=1}\frac{1}{n^p}\)

    If \( p>1\), the series converges. For \( p=1\), we have the harmonic series \( \sum^∞_{n=1}1/n\).
    If \( p≤1\), the series diverges.

    Comparison Test

    For \( \sum^∞_{n=1}a_n \) with nonnegative terms, compare with a known series \( \sum^∞_{n=1}b_n\).

    If \( a_n≤b_n\) for all \( n≥N\) and \( \sum^∞_{n=1}b_n\) converges, then \( \sum^∞_{n=1}a_n\) converges. Typically used for a series similar to a geometric or \( p\)-series. It can sometimes be difficult to find an appropriate series.
    If \( a_n≥b_n\) for all \( n≥N\) and \( \sum^∞_{n=1}b_n\) diverges, then \( \sum^∞_{n=1}a_n\) diverges.

    Limit Comparison Test

    For \( \sum^∞_{n=1}a_n\) with positive terms, compare with a series \( \sum^∞_{n=1}b_n\) by evaluating

    \( L=\lim_{n→∞}\frac{a_n}{b_n}.\)

    If \( L\) is a real number and \( L≠0\), then \( \sum^∞_{n=1}a_n\) and \( \sum^∞_{n=1}b_n\) both converge or both diverge. Typically used for a series similar to a geometric or \( p\)-series. Often easier to apply than the comparison test.
    If \( L=0\) and \( \sum^∞_{n=1}b_n\) converges, then \( \sum^∞_{n=1}a_n\) converges.
    If \( L=∞\) and \( \sum^∞_{n=1}b_n\) diverges, then \( \sum^∞_{n=1}a_n\) diverges.

    Integral Test

    If there exists a positive, continuous, decreasing function \( f\) such that \( a_n=f(n)\) for all \( n≥N\), evaluate \( ∫^∞_Nf(x)dx.\)

    \( ∫^∞_Nf(x)dx\) and \( \sum^∞_{n=1}a_n\) both converge or both diverge. Limited to those series for which the corresponding function f can be easily integrated.

    Alternating Series

    \( \sum^∞_{n=1}(−1)^{n+1}b_n\) or \( \sum^∞_{n=1}(−1)^nb_n\)

    If \( b_{n+1}≤b_n\) for all \( n≥1\) and \( b_n→0\), then the series converges. Only applies to alternating series.

    Ratio Test

    For any series \( \sum^∞_{n=1}a_n\) with nonzero terms, let \( ρ=\lim_{n→∞}∣\frac{a_{n+1}}{a_n}∣\)

    If \( 0≤ρ<1\), the series converges absolutely.

    Often used for series involving factorials or exponentials.

    If \( ρ>1\) or \( ρ=∞\), the series diverges.
    If \( ρ=1\), the test is inconclusive.

    Root Test

    For any series \( \sum^∞_{n=1}a_n\), let \( ρ=\lim_{n→∞}\sqrt[n]{|a_n|}\).

    If \( 0≤ρ<1\), the series converges absolutely. Often used for series where \( |a_n|=b^n_n\).
    If \( ρ>1\) or \( ρ=∞\), the series diverges.
    If \( ρ=1\), the test is inconclusive.
    Summary of Convergence Tests (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Rev. Leonie Wyman

    Last Updated:

    Views: 6818

    Rating: 4.9 / 5 (59 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Rev. Leonie Wyman

    Birthday: 1993-07-01

    Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

    Phone: +22014484519944

    Job: Banking Officer

    Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

    Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.